References
- Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
- Bloemberg GV, Lugtenberg BJ. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350. https://doi.org/10.1016/S1369-5266(00)00183-7
- Ruiz-Garcia C, Bejar V, Martinez-Checa F, Llamas I, Quesada E. 2005. Bacillus velezensis sp. nov., a surfactantproducing bacterium isolated from the river Velez in Malaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55: 191-195. https://doi.org/10.1099/ijs.0.63310-0
- Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, et al. 2018. Characteristics and application of a novel species of Bacillus:Bacillus velezensis. ACS Chem. Biol. 13: 500-505. https://doi.org/10.1021/acschembio.7b00874
- Zhang N, Yang D, Wang D, Miao Y, Shao J, Zhou X, et al. 2013. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genomics 16: 685-694. https://doi.org/10.1186/s12864-015-1825-5
- Palazzini JM, Dunlap CA, Bowman MJ, Chulze SN. 2016. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation:genome sequencing and secondary metabolite cluster profiles. Microbiol.Ekd. Res. 192: 30-36. https://doi.org/10.1016/j.micres.2016.06.002
- Chen L, Heng J, Qin S, Bian KA. 2018. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS One 13: e0198560-e0198581. https://doi.org/10.1371/journal.pone.0198560
- Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014. https://doi.org/10.1038/nbt1325
- Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, et al. 2011. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertil Soils 47: 495-506. https://doi.org/10.1007/s00374-011-0556-2
- Qiu M, Zhang R, Xue C, Zhang S, Li S, Zhang N, et al. 2012. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol. Fertil Soils 48: 807-816. https://doi.org/10.1007/s00374-012-0675-4
- Weng J, Wang Y, Li J, Shen Q, Zhang R. 2013. Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Appl. Microbiol. Biotechnol. 97: 8823-8830. https://doi.org/10.1007/s00253-012-4572-4
- Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R. 2013. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microbiol. 79: 808-815. https://doi.org/10.1128/AEM.02645-12
- Wang LT, Lee FL, Tai CJ, Kuo HP. 2008. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 58: 671-675. https://doi.org/10.1099/ijs.0.65191-0
- Dunlap CA, Kim SJ, Kwon SW, Rooney AP. 2016. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillusoryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66: 1212-1217. https://doi.org/10.1099/ijsem.0.000858
- Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis from an "Operational Group B. amyloliquefaciens" within the B. subtilis species complex. Front Microbiol. 8: 22.
- He P, Hao K, Blom J, Ruchert C, Vater J, Mao Z, et al. 2013. Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. J. Biotechnol. 164: 281-291. https://doi.org/10.1016/j.jbiotec.2012.12.014
- Ruckert C, Blom J, Chen X, Reva O, Borriss R. 2011. Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plant-associated B. amyloliquefaciens FZB42. J. Biotechnol. 155: 78-85. https://doi.org/10.1016/j.jbiotec.2011.01.006
- Borriss R, Chen XH, Rueckert C, Blom J, Becker A, Baumgarth B, et al. 2011. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int. J. Syst. Evol. Microbiol. 61: 1786-1801. https://doi.org/10.1099/ijs.0.023267-0
- Chowdhury SP, Hartmann A, Gao X, Borriss R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front Microbiol. 6: 780.
- Wu J, Xu G, Jin Y, Sun C, Zhou L, Lin G, et al. 2018. Isolation and characterization of Bacillus sp. GFP-2, a novel Bacillus strain with antimicrobial activities, from Whitespotted bamboo shark intestine. AMB Express. 8: 84. https://doi.org/10.1186/s13568-018-0614-3
- Chun BH, Kim KH, Jeong SE, Jeon CO. 2018. Genomic and metabolic features of the Bacillus amyloliquefaciens group - B. amyloliquefaciens, B. velezensis, and B. siamensis - revealed by pan-genome analysis. Food Microbiol. 77: 146-157. https://doi.org/10.1016/j.fm.2018.09.001
- Kim Y, Koh I, Lim MY, Chung W-H, Rho M. 2017. Pangenome analysis of Bacillus for microbiome profiling. Sci. Rep. 7: 10984. https://doi.org/10.1038/s41598-017-11385-9
- Yi H, Chun J, Cha C-J. 2014. Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis. Syst. Appl. Microbiol. 37: 95-99. https://doi.org/10.1016/j.syapm.2013.09.006
- Tritt A, Eisen JA, Facciotti MT, Darling AE. 2012. An integrated pipeline for de novo assembly of microbial genomes. PLoS One 7: 9.
- Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477. https://doi.org/10.1089/cmb.2012.0021
- Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. 2016. Phased diploid genome assembly with single molecule real-time sequencing. Nat. Methods. 13: 1050-1054. https://doi.org/10.1038/nmeth.4035
- Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27: 722-736. https://doi.org/10.1101/gr.215087.116
- Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL. 1999. Alignment of whole genomes. Nucleic Acids Res. 27: 2369-2376. https://doi.org/10.1093/nar/27.11.2369
- Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9: e112963. https://doi.org/10.1371/journal.pone.0112963
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. https://doi.org/10.1093/nar/gkw569
- Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. https://doi.org/10.1186/1471-2105-14-60
- Auch AF, von Jan M, Klenk HP, Goker M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci. 2: 117-134. https://doi.org/10.4056/sigs.531120
- Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC. 2005. Whole-genome prokaryotic phylogeny. Bioinformatics 21: 2329-2335. https://doi.org/10.1093/bioinformatics/bth324
- Auch, AF, Henz SR, Holland BR, Goker M. 2006. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences. BMC Bioinformatics 7: 350. https://doi.org/10.1186/1471-2105-7-350
- Zuo G, Hao B. 2015. CVTree3 web server for whole-genomebased and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 13: 321-331. https://doi.org/10.1016/j.gpb.2015.08.004
- Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
- Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
- Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read sequencing. arXiv: 1207.3907 [qbio. GN].
- Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Bioinformatics 43: e15.
- Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
- Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31: 3691-3693. https://doi.org/10.1093/bioinformatics/btv421
- Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41. https://doi.org/10.1186/1471-2105-4-41
- Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: Architecture and applications. BMC Bioinformatics 10: 421. https://doi.org/10.1186/1471-2105-10-421
- Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, et al. 2017. AntiSMASH 4.0 - improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45: W36-W41. https://doi.org/10.1093/nar/gkx319
- Guy L, Kultima JR, Andersson SGE, Quackenbush J. 2011. GenoPlotR: comparative gene and genome visualization in R. Bioinformatics 27: 2334-2335.
- Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30: 3059-3066. https://doi.org/10.1093/nar/gkf436
- Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
- Minh BQ, Nguyen MA, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 30:1188-1195. https://doi.org/10.1093/molbev/mst024
- Csűos M. 2010. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 26:1910-1912. https://doi.org/10.1093/bioinformatics/btq315
- Alikhan NF, Petty NK, Zakour NLB, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 12: 402. https://doi.org/10.1186/1471-2164-12-402
- Namouchi A, Didelot X, Schock U, Gicquel B, Rocha EP. 2012. After the bottleneck: Genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res. 22: 721-34. https://doi.org/10.1101/gr.129544.111
- Bart R, Cohn M, Kassen A, McCallum EJ, Shybut M, Petriello A, et al. 2012. High-throughput genomic sequencing of cassava bacterial blights trains identifies conserved effectors to target for durable resistance. Proc. Natl. Acad. Sci. USA 109: E1972-1979. https://doi.org/10.1073/pnas.1208003109
- Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
- Bechinger B, Gorr SU. 2017. Antimicrobial peptides:mechanisms of action and resistance. J. Dent. Res. 96: 254-260. https://doi.org/10.1177/0022034516679973
Cited by
- Identification of an unauthorized genetically modified bacteria in food enzyme through whole-genome sequencing vol.10, 2019, https://doi.org/10.1038/s41598-020-63987-5
- Reclassification of the biocontrol agents Bacillus subtilis BY-2 and Tu-100 as Bacillus velezensis and insights into the genomic and specialized metabolite diversity of the species vol.166, pp.12, 2020, https://doi.org/10.1099/mic.0.000986
- Biofertilizers and Biocontrol Agents for Agriculture: How to Identify and Develop New Potent Microbial Strains and Traits vol.9, pp.4, 2021, https://doi.org/10.3390/microorganisms9040817
- Bacillus velezensis: A Treasure House of Bioactive Compounds of Medicinal, Biocontrol and Environmental Importance vol.12, pp.12, 2019, https://doi.org/10.3390/f12121714