DOI QR코드

DOI QR Code

Complete Genome Sequencing of Bacillus velezensis WRN014, and Comparison with Genome Sequences of other Bacillus velezensis Strains

  • Wang, Junru (BGI Education Center, University of Chinese Academy of Sciences) ;
  • Xing, Juyuan (Wuhan University of Technology) ;
  • Lu, Jiangkun (School of Life Science, Beijing Institute of Technology) ;
  • Sun, Yingjiao (Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences) ;
  • Zhao, Juanjuan (Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences) ;
  • Miao, Shaohua (Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences) ;
  • Xiong, Qin (Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Yonggang (Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)) ;
  • Zhang, Guishan (Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences)
  • Received : 2019.01.18
  • Accepted : 2019.04.24
  • Published : 2019.05.28

Abstract

Bacillus velezensis strain WRN014 was isolated from banana fields in Hainan, China. Bacillus velezensis is an important member of the plant growth-promoting rhizobacteria (PGPR) which can enhance plant growth and control soil-borne disease. The complete genome of Bacillus velezensis WRN014 was sequenced by combining Illumina Hiseq 2500 system and Pacific Biosciences SMRT high-throughput sequencing technologies. Then, the genome of Bacillus velezensis WRN014, together with 45 other completed genome sequences of the Bacillus velezensis strains, were comparatively studied. The genome of Bacillus velezensis WRN014 was 4,063,541bp in length and contained 4,062 coding sequences, 9 genomic islands and 13 gene clusters. The results of comparative genomic analysis provide evidence that (i) The 46 Bacillus velezensis strains formed 2 obviously closely related clades in phylogenetic trees. (ii) The pangenome in this study is open and is increasing with the addition of new sequenced genomes. (iii) Analysis of single nucleotide polymorphisms (SNPs) revealed local diversification of the 46 Bacillus velezensis genomes. Surprisingly, SNPs were not evenly distributed throughout the whole genome. (iv) Analysis of gene clusters revealed that rich gene clusters spread over Bacillus velezensis strains and some gene clusters are conserved in different strains. This study reveals that the strain WRN014 and other Bacillus velezensis strains have potential to be used as PGPR and biopesticide.

Keywords

References

  1. Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  2. Bloemberg GV, Lugtenberg BJ. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350. https://doi.org/10.1016/S1369-5266(00)00183-7
  3. Ruiz-Garcia C, Bejar V, Martinez-Checa F, Llamas I, Quesada E. 2005. Bacillus velezensis sp. nov., a surfactantproducing bacterium isolated from the river Velez in Malaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55: 191-195. https://doi.org/10.1099/ijs.0.63310-0
  4. Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, et al. 2018. Characteristics and application of a novel species of Bacillus:Bacillus velezensis. ACS Chem. Biol. 13: 500-505. https://doi.org/10.1021/acschembio.7b00874
  5. Zhang N, Yang D, Wang D, Miao Y, Shao J, Zhou X, et al. 2013. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genomics 16: 685-694. https://doi.org/10.1186/s12864-015-1825-5
  6. Palazzini JM, Dunlap CA, Bowman MJ, Chulze SN. 2016. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation:genome sequencing and secondary metabolite cluster profiles. Microbiol.Ekd. Res. 192: 30-36. https://doi.org/10.1016/j.micres.2016.06.002
  7. Chen L, Heng J, Qin S, Bian KA. 2018. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS One 13: e0198560-e0198581. https://doi.org/10.1371/journal.pone.0198560
  8. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014. https://doi.org/10.1038/nbt1325
  9. Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, et al. 2011. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertil Soils 47: 495-506. https://doi.org/10.1007/s00374-011-0556-2
  10. Qiu M, Zhang R, Xue C, Zhang S, Li S, Zhang N, et al. 2012. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol. Fertil Soils 48: 807-816. https://doi.org/10.1007/s00374-012-0675-4
  11. Weng J, Wang Y, Li J, Shen Q, Zhang R. 2013. Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Appl. Microbiol. Biotechnol. 97: 8823-8830. https://doi.org/10.1007/s00253-012-4572-4
  12. Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R. 2013. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microbiol. 79: 808-815. https://doi.org/10.1128/AEM.02645-12
  13. Wang LT, Lee FL, Tai CJ, Kuo HP. 2008. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 58: 671-675. https://doi.org/10.1099/ijs.0.65191-0
  14. Dunlap CA, Kim SJ, Kwon SW, Rooney AP. 2016. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillusoryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66: 1212-1217. https://doi.org/10.1099/ijsem.0.000858
  15. Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis from an "Operational Group B. amyloliquefaciens" within the B. subtilis species complex. Front Microbiol. 8: 22.
  16. He P, Hao K, Blom J, Ruchert C, Vater J, Mao Z, et al. 2013. Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. J. Biotechnol. 164: 281-291. https://doi.org/10.1016/j.jbiotec.2012.12.014
  17. Ruckert C, Blom J, Chen X, Reva O, Borriss R. 2011. Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plant-associated B. amyloliquefaciens FZB42. J. Biotechnol. 155: 78-85. https://doi.org/10.1016/j.jbiotec.2011.01.006
  18. Borriss R, Chen XH, Rueckert C, Blom J, Becker A, Baumgarth B, et al. 2011. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int. J. Syst. Evol. Microbiol. 61: 1786-1801. https://doi.org/10.1099/ijs.0.023267-0
  19. Chowdhury SP, Hartmann A, Gao X, Borriss R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front Microbiol. 6: 780.
  20. Wu J, Xu G, Jin Y, Sun C, Zhou L, Lin G, et al. 2018. Isolation and characterization of Bacillus sp. GFP-2, a novel Bacillus strain with antimicrobial activities, from Whitespotted bamboo shark intestine. AMB Express. 8: 84. https://doi.org/10.1186/s13568-018-0614-3
  21. Chun BH, Kim KH, Jeong SE, Jeon CO. 2018. Genomic and metabolic features of the Bacillus amyloliquefaciens group - B. amyloliquefaciens, B. velezensis, and B. siamensis - revealed by pan-genome analysis. Food Microbiol. 77: 146-157. https://doi.org/10.1016/j.fm.2018.09.001
  22. Kim Y, Koh I, Lim MY, Chung W-H, Rho M. 2017. Pangenome analysis of Bacillus for microbiome profiling. Sci. Rep. 7: 10984. https://doi.org/10.1038/s41598-017-11385-9
  23. Yi H, Chun J, Cha C-J. 2014. Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis. Syst. Appl. Microbiol. 37: 95-99. https://doi.org/10.1016/j.syapm.2013.09.006
  24. Tritt A, Eisen JA, Facciotti MT, Darling AE. 2012. An integrated pipeline for de novo assembly of microbial genomes. PLoS One 7: 9.
  25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477. https://doi.org/10.1089/cmb.2012.0021
  26. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. 2016. Phased diploid genome assembly with single molecule real-time sequencing. Nat. Methods. 13: 1050-1054. https://doi.org/10.1038/nmeth.4035
  27. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27: 722-736. https://doi.org/10.1101/gr.215087.116
  28. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL. 1999. Alignment of whole genomes. Nucleic Acids Res. 27: 2369-2376. https://doi.org/10.1093/nar/27.11.2369
  29. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9: e112963. https://doi.org/10.1371/journal.pone.0112963
  30. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. https://doi.org/10.1093/nar/gkw569
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. https://doi.org/10.1186/1471-2105-14-60
  32. Auch AF, von Jan M, Klenk HP, Goker M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci. 2: 117-134. https://doi.org/10.4056/sigs.531120
  33. Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC. 2005. Whole-genome prokaryotic phylogeny. Bioinformatics 21: 2329-2335. https://doi.org/10.1093/bioinformatics/bth324
  34. Auch, AF, Henz SR, Holland BR, Goker M. 2006. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences. BMC Bioinformatics 7: 350. https://doi.org/10.1186/1471-2105-7-350
  35. Zuo G, Hao B. 2015. CVTree3 web server for whole-genomebased and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 13: 321-331. https://doi.org/10.1016/j.gpb.2015.08.004
  36. Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  37. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  38. Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read sequencing. arXiv: 1207.3907 [qbio. GN].
  39. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Bioinformatics 43: e15.
  40. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
  41. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31: 3691-3693. https://doi.org/10.1093/bioinformatics/btv421
  42. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41. https://doi.org/10.1186/1471-2105-4-41
  43. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: Architecture and applications. BMC Bioinformatics 10: 421. https://doi.org/10.1186/1471-2105-10-421
  44. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, et al. 2017. AntiSMASH 4.0 - improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45: W36-W41. https://doi.org/10.1093/nar/gkx319
  45. Guy L, Kultima JR, Andersson SGE, Quackenbush J. 2011. GenoPlotR: comparative gene and genome visualization in R. Bioinformatics 27: 2334-2335.
  46. Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30: 3059-3066. https://doi.org/10.1093/nar/gkf436
  47. Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  48. Minh BQ, Nguyen MA, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 30:1188-1195. https://doi.org/10.1093/molbev/mst024
  49. Csűos M. 2010. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 26:1910-1912. https://doi.org/10.1093/bioinformatics/btq315
  50. Alikhan NF, Petty NK, Zakour NLB, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 12: 402. https://doi.org/10.1186/1471-2164-12-402
  51. Namouchi A, Didelot X, Schock U, Gicquel B, Rocha EP. 2012. After the bottleneck: Genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res. 22: 721-34. https://doi.org/10.1101/gr.129544.111
  52. Bart R, Cohn M, Kassen A, McCallum EJ, Shybut M, Petriello A, et al. 2012. High-throughput genomic sequencing of cassava bacterial blights trains identifies conserved effectors to target for durable resistance. Proc. Natl. Acad. Sci. USA 109: E1972-1979. https://doi.org/10.1073/pnas.1208003109
  53. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  54. Bechinger B, Gorr SU. 2017. Antimicrobial peptides:mechanisms of action and resistance. J. Dent. Res. 96: 254-260. https://doi.org/10.1177/0022034516679973

Cited by

  1. Identification of an unauthorized genetically modified bacteria in food enzyme through whole-genome sequencing vol.10, 2019, https://doi.org/10.1038/s41598-020-63987-5
  2. Reclassification of the biocontrol agents Bacillus subtilis BY-2 and Tu-100 as Bacillus velezensis and insights into the genomic and specialized metabolite diversity of the species vol.166, pp.12, 2020, https://doi.org/10.1099/mic.0.000986
  3. Biofertilizers and Biocontrol Agents for Agriculture: How to Identify and Develop New Potent Microbial Strains and Traits vol.9, pp.4, 2021, https://doi.org/10.3390/microorganisms9040817
  4. Bacillus velezensis: A Treasure House of Bioactive Compounds of Medicinal, Biocontrol and Environmental Importance vol.12, pp.12, 2019, https://doi.org/10.3390/f12121714