DOI QR코드

DOI QR Code

Increased Tolerance to Furfural by Introduction of Polyhydroxybutyrate Synthetic Genes to Escherichia coli

  • Jung, Hye-Rim (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Lee, Ju-Hee (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Moon, Yu-Mi (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Choi, Tae-Rim (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Yang, Soo-Yeon (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Song, Hun-Suk (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Park, Jun Young (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Park, Ye Lim (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Bhatia, Shashi Kant (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Gurav, Ranjit (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Ko, Byoung Joon (New Drug Development Center, Osong Medical Innovative Foundation) ;
  • Yang, Yung-Hun (Department of Biological Engineering, College of Engineering, Konkuk University)
  • Received : 2019.01.31
  • Accepted : 2019.04.24
  • Published : 2019.05.28

Abstract

Polyhydroxybutyrate (PHB), the most well-known polyhydroxyalkanoate, is a bio-based, biodegradable polymer that has the potential to replace petroleum-based plastics. Lignocellulose hydrolysate, a non-edible resource, is a promising substrate for the sustainable, fermentative production of PHB. However, its application is limited by the generation of inhibitors during the pretreatment processes. In this study, we investigated the feasibility of PHB production in E. coli in the presence of inhibitors found in lignocellulose hydrolysates. Our results show that the introduction of PHB synthetic genes (bktB, phaB, and phaC from Ralstonia eutropha H16) improved cell growth in the presence of the inhibitors such as furfural, 4-hydroxybenzaldehyde, and vanillin, suggesting that PHB synthetic genes confer resistance to these inhibitors. In addition, increased PHB production was observed in the presence of furfural as opposed to the absence of furfural, suggesting that this compound could be used to stimulate PHB production. Our findings indicate that PHB production using lignocellulose hydrolysates in recombinant E. coli could be an innovative strategy for cost-effective PHB production, and PHB could be a good target product from lignocellulose hydrolysates, especially glucose.

Keywords

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489. https://doi.org/10.1126/science.1114736
  2. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, et al. 2008. How biotech can transform biofuels. Nat. Biotechnol. 26: 169-172. https://doi.org/10.1038/nbt0208-169
  3. Sims RE, Mabee W, Saddler JN, Taylor M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101: 1570-1580. https://doi.org/10.1016/j.biortech.2009.11.046
  4. Brodin M, Vallejos M, Opedal MT, Area MC, Chinga-Carrasco G. 2017. Lignocellulosics as sustainable resources for production of bioplastics-a review. J. Clean Prod. 162:646-664. https://doi.org/10.1016/j.jclepro.2017.05.209
  5. Sharma HK, Xu C, Qin W. 2017. Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste and Biomass Valorization. 1-17.
  6. Carroll A, Somerville C. 2009. Cellulosic biofuels. Annu. Rev. Plant Biol. 60: 165-182. https://doi.org/10.1146/annurev.arplant.043008.092125
  7. Weijde Tvd, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RGF, et al. 2013. The potential of C4 grasses for cellulosic biofuel production. Front. Plant Sci. 4: 107. https://doi.org/10.3389/fpls.2013.00107
  8. Bhatia SK, Gurav R, Choi T-R, Jung H-R, Yang S-Y, Moon Y-M, et al. 2019. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour. Technol. 271: 306-315. https://doi.org/10.1016/j.biortech.2018.09.122
  9. Kumar P, Barrett DM, Delwiche MJ, Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. 48: 3713-3729. https://doi.org/10.1021/ie801542g
  10. Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  11. Mills TY, Sandoval NR, Gill RT. 2009. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol. Biofuels 2: 26. https://doi.org/10.1186/1754-6834-2-26
  12. Saha BC. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279-291. https://doi.org/10.1007/s10295-003-0049-x
  13. Gorsich S, Dien B, Nichols N, Slininger P, Liu Z, Skory C. 2006. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 71: 339-349. https://doi.org/10.1007/s00253-005-0142-3
  14. Barciszewski J, Siboska GE, Pedersen BO, Clark BF, Rattan SI. 1997. A mechanism for the in vivo formation of N6-furfuryladenine, kinetin, as a secondary oxidative damage product of DNA. FEBS Lett. 414: 457-460. https://doi.org/10.1016/S0014-5793(97)01037-5
  15. Palmqvist E, Hahn-Hagerdal B. 2000. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74: 25-33. https://doi.org/10.1016/S0960-8524(99)00161-3
  16. Zaldivar J, Martinez A, Ingram LO. 2000. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 68: 524-530. https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<524::AID-BIT6>3.0.CO;2-T
  17. Song H-S, Jeon J-M, Kim H-J, Bhatia SK, Sathiyanarayanan G, Kim J, et al. 2017. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli. Bioresour. Technol. 245: 1430-1435. https://doi.org/10.1016/j.biortech.2017.05.197
  18. Seo H-M, Jeon J-M, Lee JH, Song H-S, Joo H-B, Park S-H, et al. 2016. Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural. J. Ind. Microbiol. Biotechnol. 43: 37-44. https://doi.org/10.1007/s10295-015-1718-2
  19. Wang X, M iller E, Y o mano L, Zhang X, S hanmugam K, Ingram L. 2011. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl. Environ. Microbiol. 77: 5132-5140. https://doi.org/10.1128/AEM.05008-11
  20. Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, et al. 2013. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc. Natl. Acad. Sci. USA 110: 4021-4026. https://doi.org/10.1073/pnas.1217958110
  21. Madkour MH, Heinrich D, Alghamdi MA, Shabbaj, II, Steinbuchel A. 2013. PHA recovery from biomass. Biomacromolecules 14: 2963-2972. https://doi.org/10.1021/bm4010244
  22. Steinbuchel A, Fuchtenbusch B. 1998. Bacterial and other biological systems for polyester production. Trends. Biotechnol. 16: 419-427. https://doi.org/10.1016/S0167-7799(98)01194-9
  23. Wen Q, Chen Z, Tian T, Chen W. 2010. Effects of phosphorus and nitrogen limitation on PHA production in activated sludge. J. Environ. Sci. 22: 1602-1607. https://doi.org/10.1016/S1001-0742(09)60295-3
  24. Johnson K, Kleerebezem R, van Loosdrecht MC. 2010. Influence of the C/N ratio on the performance of polyhydroxybutyrate (PHB) producing sequencing batch reactors at short SRTs. Water Res. 44: 2141-2152. https://doi.org/10.1016/j.watres.2009.12.031
  25. Ahn J, Jho EH, Nam K. 2015. Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates. Environ. Eng. Res. 20: 246-253. https://doi.org/10.4491/eer.2015.055
  26. Sudesh K, Abe H, Doi Y. 2000. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25: 1503-1555. https://doi.org/10.1016/S0079-6700(00)00035-6
  27. Du C, Sabirova J, Soetaert W, Lin C. 2012. Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr. Chem. Biol. 6: 14-25. https://doi.org/10.2174/187231312799984394
  28. Broeren M. 2013. Production of Bio-ethylene-Technology Brief. IEA-ETSAP & IRENA, International Renewable Energy Agency.
  29. Cesario MT, Raposo RS, d e Almeida MCM, v an K eulen F, Ferreira BS, da Fonseca MMR. 2014. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. N. Biotechnol. 31: 104-113. https://doi.org/10.1016/j.nbt.2013.10.004
  30. Yu J, Stahl H. 2008. Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour. Technol. 99:8042-8048. https://doi.org/10.1016/j.biortech.2008.03.071
  31. Silva L, Taciro M, Ramos MM, Carter J, Pradella J, Gomez J. 2004. Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind. Microbiol. Biotechnol. 31: 245-254. https://doi.org/10.1007/s10295-004-0136-7
  32. Dietrich D, Illman B, Crooks C. 2013. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava. BMC Res. Notes 6: 219. https://doi.org/10.1186/1756-0500-6-219
  33. Wang W, Yang S, Hunsinger GB, Pienkos PT, Johnson DK. 2014. Connecting lignin-degradation pathway with pretreatment inhibitor sensitivity of Cupriavidus necator. Front. Microbiol. 5: 247. https://doi.org/10.3389/fmicb.2014.00247
  34. Dietrich K, Dumont M-J, Schwinghamer T, Orsat V, Del Rio LF. 2017. Model study to assess softwood hemicellulose hydrolysates as the carbon source for PHB production in Paraburkholderia sacchari IPT 101. Biomacromolecules 19: 188-200. https://doi.org/10.1021/acs.biomac.7b01446
  35. Yang YH, Brigham C, Song E, Jeon JM, Rha C, Sinskey A. 2012. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing a predominant amount of 3-hydroxyvalerate by engineered Escherichia coli expressing propionate-CoA transferase. J. Appl. Microbiol. 113: 815-823. https://doi.org/10.1111/j.1365-2672.2012.05391.x
  36. Jeon JM, Kim HJ, Bhatia SK, Sung C, Seo HM, Kim JH, et al. 2017. Application of acetyl-CoA acetyltransferase (AtoAD) in Escherichia coli to increase 3-hydroxyvalerate fraction in poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Bioproc. Biosyst. Eng. 40: 781-789. https://doi.org/10.1007/s00449-017-1743-9
  37. Mezzina MP, Wetzler DE, Almeida A, Dinjaski N, Prieto MA, Pettinari MJ. 2015. Aphasin with extra talents: apolyhydroxyalkanoate granule-associated protein has chaperone activity. Environ. Microbiol. 17: 1765-1776. https://doi.org/10.1111/1462-2920.12636
  38. Phylactides M. 1997. Molecular biology series 3. Tools of molecular biology: gene cloning. Br. J. Hosp. Med. 57: 49-50.
  39. Braunegg G, Sonnleitner B, Lafferty R. 1978. A rapid gas chromatographic method for the determination of poly-${\beta}$-hydroxybutyric acid in microbial biomass. Appl. Microbiol. Biotechnol. 6: 29-37. https://doi.org/10.1007/BF00500854
  40. Bhatia SK, Kim J, Song H-S, Kim HJ, Jeon J-M, Sathiyanarayanan G, et al. 2017. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. Bioresour. Technol. 233: 99-109. https://doi.org/10.1016/j.biortech.2017.02.061
  41. Zaldivar J, Ingram LO. 1999. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng. 66: 203-210. https://doi.org/10.1002/(SICI)1097-0290(1999)66:4<203::AID-BIT1>3.0.CO;2-#
  42. Song HS, Jeon JM, Choi YK, Kim JY, Kim W, Yoon JJ, et al. 2017. L-Glycine Alleviates Furfural-Induced Growth Inhibition during Isobutanol Production in Escherichia coli. J. Microbiol.Biotechnol. 27: 2165-2172. https://doi.org/10.4014/jmb.1705.05020
  43. Nieves LM, Panyon LA, Wang X. 2015. Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front. Bioeng. Biotechnol. 3: 17. https://doi.org/10.3389/fbioe.2015.00017
  44. Moon J, Liu ZL. 2015. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae. Yeast 32: 399-407. https://doi.org/10.1002/yea.3067
  45. Han M-J, Yoon SS, Lee SY. 2001. Proteome analysis of metabolically engineeredescherichia coli producing poly (3-hydroxybutyrate). J Bacteriol. 183: 301-308. https://doi.org/10.1128/JB.183.1.301-308.2001
  46. Wang Q, Yu H, Xia Y, Kang Z, Qi Q. 2009. Complete PHB mobilization in Escherichia coli enhances the s tress to lerance:a potential biotechnological application. Microb. Cell Fact. 8: 47. https://doi.org/10.1186/1475-2859-8-47
  47. James BW, Mauchline WS, Dennis PJ, Keevil CW, Wait R. 1999. Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments. Appl. Environ Molecular biology series 3. Tools of molecular biology: gene cloning. Microbiol. 65: 822-827.
  48. Yang YH, Brigham C, Willis L, Rha C, Sinskey A. 2011. Improved detergent-based recovery of polyhydroxyalkanoates (PHAs). Biotechnology Lett. 33: 937-942. https://doi.org/10.1007/s10529-010-0513-4

Cited by

  1. The 3-ketoacyl-CoA thiolase: an engineered enzyme for carbon chain elongation of chemical compounds vol.104, pp.19, 2019, https://doi.org/10.1007/s00253-020-10848-w
  2. Fruit residues as a sustainable feedstock for the production of bacterial polyhydroxyalkanoates vol.307, 2021, https://doi.org/10.1016/j.jclepro.2021.127236
  3. Established and Emerging Producers of PHA: Redefining the Possibility vol.193, pp.11, 2019, https://doi.org/10.1007/s12010-021-03626-5
  4. Isolation of Microbulbifer sp. SOL66 with High Polyhydroxyalkanoate-Degrading Activity from the Marine Environment vol.13, pp.23, 2019, https://doi.org/10.3390/polym13234257