DOI QR코드

DOI QR Code

Microencapsulation of Probiotic Lactobacillus acidophilus KBL409 by Extrusion Technology to Enhance Survival under Simulated Intestinal and Freeze-Drying Conditions

  • Lee, YunJung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Ji, Yu Ra (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, Sumi (Food Research Institute, Ourhome Ltd.) ;
  • Choi, Mi-Jung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Cho, Youngjae (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • 투고 : 2019.03.11
  • 심사 : 2019.04.18
  • 발행 : 2019.05.28

초록

The probiotic Lactobacillus acidophilus KBL409 was encapsulated with alginate (Al) and alginate-chitosan (Al/Chi) through extrusion method. The sizes and zeta potentials of microspheres were measured to confirm encapsulation. To evaluate the protective effect of microspheres against gastrointestinal fluids, all the samples were exposed to simulated gastric fluids (SGFs, pH 1.5) at $37^{\circ}C$ for 1 or 2 h, followed by incubation with simulated intestinal fluids (SIFs, pH 6.5) for 2 h. The mucoadhesive ability of microspheres was evaluated using the intestinal epithelial cell line HT29-MTX. To extend the shelf-life of probiotics, lyoprotectants such as disaccharide and polysaccharide were mixed with free or encapsulated cells during the freeze-drying process. The size of the microspheres demonstrated a narrow distribution, while the zeta potentials of Al and Al/Chi-microspheres were $-17.9{\pm}2.3$ and $20.4{\pm}2.6mV$, respectively. Among all the samples, Al/Chi-encapsulated cells showed the highest survival rate even after exposure to SGF and SIF. The mucoadhesive abilities of Al and Al/Chi-microspheres were higher than 94%, whereas the free L. acidophilus showed 88.1% mucoadhesion. Ten percent of sucrose showed over 80% survival rate in free or encapsulated cells. Therefore, L. acidophilus encapsulated with Al and Al/Chi-microspheres showed higher survival rates after exposure to the gastrointestinal tract and better mucoadhesive abilities than the free cells. Also, sucrose showed the highest protective effect of L. acidophilus during the freeze-drying process.

키워드

참고문헌

  1. Shi LE, Li ZH, Li DT, Xu M, Chen HY, Zhang ZL, et al. 2013. Encapsulation of probiotic Lactobacillus bulgaricus in alginate-milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J. Food Eng. 117: 99-104. https://doi.org/10.1016/j.jfoodeng.2013.02.012
  2. Ooi LG, Liong MT. 2010. Cholesterol-lowering effects of probiotics and prebiotics: A Review of in vivo and in vitro findings. Int. J. Mol. Sci. 11: 2499-2522. https://doi.org/10.3390/ijms11062499
  3. Knorr D. 1998. Technology aspects related to microorganisms in functional foods. Trends Food Sci. Technol. 9: 295-306. https://doi.org/10.1016/S0924-2244(98)00051-X
  4. Shahidi F, Han XQ. 1993. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 33: 501-547. https://doi.org/10.1080/10408399309527645
  5. Muthukumarasamy P, Allan-Wojtas P, Holley RA. 2006. Stability of Lactobacillus reuteri in different types of microcapsules. J. Food Sci. 71: 20-24. https://doi.org/10.1111/j.1365-2621.2006.tb12395.x
  6. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. 2011. Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules 12: 2834-2840. https://doi.org/10.1021/bm200576h
  7. Krasaekoopt W, Bhandari B, Deeth H. 2003. Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13: 3-13. https://doi.org/10.1016/S0958-6946(02)00155-3
  8. Martin MJ, Lara-Villoslada F, Ruiz MA, Morales ME. 2015. Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov. Food Sci. Emerg. Technol. 27: 15-25. https://doi.org/10.1016/j.ifset.2014.09.010
  9. Silva MP, Tulini FL, Martins E, Penning M, Favaro-Trindade CS, Poncelet D. 2018. Comparison of extrusion and coextrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. LWT-Food Sci. Technol. 89: 392-399. https://doi.org/10.1016/j.lwt.2017.11.008
  10. Rinaudo M. 2008. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57: 397-430. https://doi.org/10.1002/pi.2378
  11. Gombotz WR, Wee S. 1998. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31: 267-285. https://doi.org/10.1016/S0169-409X(97)00124-5
  12. Chen S, Cao Y, Ferguson LR, Shu Q, Garg S. 2013. Evaluation of mucoadhesive coatings of chitosan and thiolated chitosan for the colonic delivery of microencapsulated probiotic bacteria. J. Microencapsul. 30: 103-115. https://doi.org/10.3109/02652048.2012.700959
  13. Khan NH, Korber DR, Low NH, Nickerson MT. 2013. Development of extrusion-based legume protein isolatealginate capsules for the protection and delivery of the acid sensitive probiotic, Bifidobacterium adolescentis. Food Res. Int. 54: 730-737. https://doi.org/10.1016/j.foodres.2013.08.017
  14. Shori AB. 2017. Microencapsulation improved probiotics survival during gastric transit. HAYATI J. Biosci. 24: 1-5. https://doi.org/10.1016/j.hjb.2016.12.008
  15. Bhumkar DR, Pokharkar VB. 2006. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate:a technical note. Pharm. Dev. Technol. 7: E138-E143. https://doi.org/10.1208/pt070250
  16. Minekus M, Alminger M, Alvito P, Balance S, Bohn T, Bourlieu C, et al. 2014. A standardized static in vitro digestion method suitable for food - an international consensus. Food Funct. 5: 1113-1124. https://doi.org/10.1039/C3FO60702J
  17. Oomen G, Rompelberg CJM, Bruil MA, Dobbe CJG, Pereboom DPKH, Sips AJAM. 2003. Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch. Environ. Contam. Toxicol. 44: 281-287. https://doi.org/10.1007/s00244-002-1278-0
  18. Shinde T, Sun-Waterhouse D, Brooks J. 2014. Co-extrusion encapsulation of probiotic Lactobacillus acidophilus alone or together with apple skin polyphenols: an aqueous and value-added delivery system using alginate. Food Bioproc. Tech. 7: 1581-1596. https://doi.org/10.1007/s11947-013-1129-1
  19. Lotfipour F, Mirzaeei S, Maghsoodi M. 2012. Preparation and characterization of alginate and payllium beads containing Lactobacillus acidophilus. Sci. World J. 2012: 680108.
  20. Klemmer KJ, Korber DR, Low NH, Nickerson MT. 2011. Pea protein-based capsules for probiotic and prebiotic delivery. Int. J. Food Sci. Technol. 46: 2248-2256. https://doi.org/10.1111/j.1365-2621.2011.02743.x
  21. Heidebach T, Forst P, Kulozik U. 2009. Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocoll. 23: 1670-1677. https://doi.org/10.1016/j.foodhyd.2009.01.006
  22. Heidebach T, Forst P, Kulozik U. 2012. Microencapsulation of probiotic cells for food applications. CRC. Crit. Rev. Food Sci. Nutr. 52: 291-311. https://doi.org/10.1080/10408398.2010.499801
  23. Hansen LT, Allan-Wojtas PM, Jin YL, Paulson AT. 2002. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 19: 35-45. https://doi.org/10.1006/fmic.2001.0452
  24. Kirby BJ, Hasselbrink JEF. 2004. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25: 187-202. https://doi.org/10.1002/elps.200305754
  25. Haidar ZS, Hamdy RC, Tabrizian M. 2008. Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials. 29: 1207-1215. https://doi.org/10.1016/j.biomaterials.2007.11.012
  26. Chavarri M, Maranon I, Ares R, Ibanez FC, Marzo F, Villaran MC. 2010. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol. 142: 185-189. https://doi.org/10.1016/j.ijfoodmicro.2010.06.022
  27. Ramos PE, Abrunhosa L, Pinheiro A, Cerqueira MA, Motta C, Castanheira I, et al. 2016. Probiotic-loaded microcapsule system for human in situ folate production: Encapsulation and system validation. Food Res. Int. 90: 25-32. https://doi.org/10.1016/j.foodres.2016.10.036
  28. Sabikhi L, Babu R, Thompkinson DK, Kapila S. 2010. Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food Bioproc. Tech. 3: 586-593. https://doi.org/10.1007/s11947-008-0135-1
  29. Zanjani MAK, Tarzi BG, Sharifan A, Mohammadi N. 2014. Microencapsulation of probiotics by calcium alginategelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iran. J. Pharm. Res. 13: 843-852.
  30. Murata Y, Toniwa S, Miyamoto E, Kawahima S. 1999. Preparation alginate gel beads containing chitosan nicotinic acid salt and the functions. Eur. J. Pharm. Biopharm. 48: 49-52. https://doi.org/10.1016/S0939-6411(99)00026-0
  31. Koo S, Cho Y, Huh C, Baek Y, Park J. 2001. Improvement of the stability of Lactobacillus casei YIT 9018 by microencapsulation using alginate and chitosan. J. Microbiol. Biotechnol. 11: 376-383.
  32. Gagnon M, Berner AZ, Chervet N, Chassard C, Lactoix C. 2013. Comparison of the Caco-2, HT-29 and the mucussecreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J. Microbiol. Methods 94:274-279. https://doi.org/10.1016/j.mimet.2013.06.027
  33. Anselmo AC, McHugh KJ, Webster J, Langer R, Jaklenec A. 2016. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 28: 9486-9490. https://doi.org/10.1002/adma.201603270
  34. Rodklongtan A, La-ongkham O, Nitisinprasert S, Chitprasert P. 2014. Enhancement of Lactobacillus reuteri KUB-AC5 survival in broiler gastrointestinal tract by microencapsulation with alginate-chitosan semi-interpenetrating polymer networks. J. Appl. Microbiol. 117: 227-238. https://doi.org/10.1111/jam.12517
  35. He C, Shiwei C, Chuanna L, Guowei S. 2015. Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying. Prep. Biochem. Biotech. 45: 463-475. https://doi.org/10.1080/10826068.2014.923451
  36. Xiangchen M, Catherine SS, Gerald FF, Charles D, Ross P. 2008. Anhydrobiotics: The challenges of drying probiotic cultures. Food Chem. 106: 1406-1416. https://doi.org/10.1016/j.foodchem.2007.04.076
  37. Mimoza BS, Monika M, Sharareh S, Frank MU, Helmut V. 2014. Effect of lyoprotectants on ${\beta}$-glucosidase activity and viability of Bifidobacterium infantis after freeze-drying and storage in milk and low pH juices. LWT-Food Sci. Technol. 57: 276-282. https://doi.org/10.1016/j.lwt.2014.01.011
  38. Maria S, Ilkka V, Liisa N, Anu V, Jaana M. 2006. Fibres as carries for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolate-coated breakfast cereals. Int. J. Food Microbiol. 112: 171-178. https://doi.org/10.1016/j.ijfoodmicro.2006.05.019
  39. Ananta E, Volkert M. Knorr D. 2005. Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int. Dairy J. 15: 399-409. https://doi.org/10.1016/j.idairyj.2004.08.004
  40. Susanna R, Pirjo R. 2010. Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur. Food Res. Technol. 231: 1-12. https://doi.org/10.1007/s00217-010-1246-2
  41. Heckly RJ. 1985. Principles of preserving bacteria by freezedrying. Dev. Ind. Microbiol. 26: 379-395.
  42. Carpenter JF, Prestrelski SJ, Arakawa T. 1993. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization: I. Enzyme activity and calorimetric studies. Arch. Biochem. Biophys. 303: 456-464. https://doi.org/10.1006/abbi.1993.1309

피인용 문헌

  1. Recent Advancements in Using Polymers for Intestinal Mucoadhesion and Mucopenetration vol.20, pp.3, 2020, https://doi.org/10.1002/mabi.201900342
  2. Progress in microencapsulation of probiotics: A review vol.19, pp.2, 2019, https://doi.org/10.1111/1541-4337.12532
  3. Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions vol.6, pp.3, 2019, https://doi.org/10.1016/j.heliyon.2020.e03541
  4. Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review vol.137, 2020, https://doi.org/10.1016/j.foodres.2020.109682
  5. Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities vol.6, pp.4, 2019, https://doi.org/10.3390/fermentation6040121
  6. Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology vol.16, 2019, https://doi.org/10.2147/ijn.s337427
  7. The Functional Properties of Lactobacillus casei HY2782 Are Affected by the Fermentation Time vol.11, pp.6, 2019, https://doi.org/10.3390/app11062481
  8. Effects of 2′-Fucosyllactose-Based Encapsulation on Probiotic Properties in Streptococcus thermophilus vol.11, pp.13, 2019, https://doi.org/10.3390/app11135761
  9. Microencapsulation of a Pseudomonas Strain (VUPF506) in Alginate-Whey Protein-Carbon Nanotubes and Next-Generation Sequencing Identification of This Strain vol.13, pp.23, 2019, https://doi.org/10.3390/polym13234269
  10. Improve the viability and extracellular polymeric substances bioactivity of Lactiplantibacillus plantarum VAL6 using the environmental adaptation vol.131, 2019, https://doi.org/10.1016/j.fbp.2021.11.006