References
- Abdel-Hafez, A., Tang, X., Tian, N., and Xu, Y. (2014). A reputation-enhanced recommender system. Advanced Data Mining and Applications, Springer, Cham.
- Adomavicius, G., and Kwon, Y. (2008). Overcoming accuracy-diversity tradeoff in recommender systems: a variance-based approach. In Proceedings of the 18th Workshop on Information Technology and Systems.
- Adomavicius, G., and Kwon, Y. (2012). Improving aggregate recommendation diversity using ranking-based techniques. IEEE Transactions on Knowledge and Data Engineering, 24(5), 896-911. https://doi.org/10.1109/TKDE.2011.15
- Ahn, H., Han, I., and Kim, K. J. (2006). The product recommender system combining association rules and classification models: the case of g internet shopping mall. Information Systems Review, 8(1), 181-201.
- Athiyaman, A. (1997). Linking student satisfaction and service quality perceptions: the case of university education. European Journal of Marketing, 31(7), 528-540. https://doi.org/10.1108/03090569710176655
- Bennett, J., and Lanning, S. (2007). The Netflix prize. In Proceedings of KDD Cup and Workshop.
- Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS Quarterly, 25(3), 351-370. https://doi.org/10.2307/3250921
- Bitner, M. J. (1990). Evaluating service encounters: the effects of physical surroundings and employee responses. Journal of Marketing, 54(2), 69-82. https://doi.org/10.1177/002224299005400206
- Calvo-Porral, C., and Levy-Mangin, J. (2015). Switching behavior and customer satisfaction in mobile services: analyzing virtual and traditional operators. Computers in Human Behavior, 49, 532-540. https://doi.org/10.1016/j.chb.2015.03.057
- Chandra, A., Chen, H., and Yao, X. (2006). Trade-off between diversity and accuracy in ensemble generation. Multi-Objective Machine Learning, Springer Verlag, Berlin.
- Chen, D. N., Hu, P. J. H., Kuo, Y. R., and Liang, T. P. (2010). A Web-based personalized recommendation system for mobile phone selection: Design, implementation, and evaluation. Expert Systems with Applications, 37(12), 8201-8210. https://doi.org/10.1016/j.eswa.2010.05.066
- Cho, Y. H., and Kim, J. K. (2004). Application of web usage mining and product taxonomy to collaborative recommendations in e-commerce. Expert Systems with Applications, 26(2), 233-246. https://doi.org/10.1016/S0957-4174(03)00138-6
- Cho, Y. H., Kim, J. K., and Kim, S. H. (2002). A personalized recommender system based on web usage mining and decision tree induction. Expert Systems with Applications, 23(3), 329-342. https://doi.org/10.1016/S0957-4174(02)00052-0
- Chong, B., and Wong, M. (2005). Crafting an effective customer retention strategy: a review of halo effect on customer satisfaction in online auctions. International Journal of Management and Enterprise Development, 2(1), 12-26. https://doi.org/10.1504/IJMED.2005.006021
- Christoffel, F., Paudel, B., Newell, C., and Bernstein, A. (2015). Blockbusters and wallflowers: accurate, diverse, and scalable recommendations with random walks. In Proceedings of the 9th ACM Conference on Recommender Systems, ACM, 163-170.
- Cremonesi, P., Garzotto, F., Negro, S., Papadopoulos, A. V., and Turrin, R. (2011). Looking for "good" recommendations: a comparative evaluation of recommender systems. Human-Computer Interaction-INTERACT, Springer Verlag, Berlin.
- Das, A. S., Datar, M., Garg, A., and Rajaram, S. (2007). Google news personalization: scalable online collaborative filtering. In Proceedings of the 16th International Conference on World Wide Web, ACM, 271-280.
- Deng, Z., Lu, Y., Wei, K. K., and Zhang, J. (2010). Understanding customer satisfaction and loyalty: an empirical study of mobile instant messages in China. International Journal of Information Management, 30(4), 289-300. https://doi.org/10.1016/j.ijinfomgt.2009.10.001
- Ekstrand, M. D., Harper, F. M., Willemsen, M. C., and Konstan, J. A. (2014). User perception of differences in recommender algorithms. In Proceedings of the 8th ACM Conference on Recommender Systems, ACM, 161-168.
- Fitzsimons, G. J., and Lehmann, D. R. (2004). Reactance to recommendations: when unsolicited advice yields contrary responses. Marketing Science, 23(1), 82-94. https://doi.org/10.1287/mksc.1030.0033
- Gan, M., and Jiang, R. (2013). Constructing a user similarity network to remove adverse influence of popular objects for personalized recommendation. Expert Systems with Applications, 40(10), 4044-4053. https://doi.org/10.1016/j.eswa.2013.01.004
- Gerpott, T. J., Rams, W., and Schindler, A. (2001). Customer retention, loyalty, and satisfaction in the German mobile cellular telecommunications market, Telecomm. Policy, 25, 249-269. https://doi.org/10.1016/S0308-5961(00)00097-5
- Herlocker, J. L., Konstan, J. A., and Riedl, J. (2000). Explaining collaborative filtering recommendations. In Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, ACM, 241-250.
- Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53. https://doi.org/10.1145/963770.963772
- Hijikata, Y., Shimizu, T., and Nishida, S. (2009). Discovery-oriented collaborative filtering for improving user satisfaction. In Proceedings of the 14th International Conference on Intelligent User Interfaces, ACM, 67-76.
- Hill, F. M. (1995). Managing service quality in higher education: the role of the student as primary consumer. Quality Assurance in Education, 3(3), 10-21. https://doi.org/10.1108/09684889510093497
- Hill, W., Stead, L., Rosenstein, M., and Furnas, G. (1995). Recommending and evaluating choices in a virtual community of use. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press/Addison-Wesley Publishing Co., 194-201.
- Im, I., and Hars, A. (2007). Does a one-size recommendation system fit all? the effectiveness of collaborative filtering based recommendation systems across different domains and search modes. ACM Transactions on Information Systems, 26(1), 4.
- Javari, A., and Jalili, M. (2015). A probabilistic model to resolve diversity-accuracy challenge of recommendation systems. Knowledge and Information Systems, 44(3), 609-627. https://doi.org/10.1007/s10115-014-0779-2
- Jiang, Y., Shang, J., and Liu, Y. (2010). Maximizing customer satisfaction through an online recommendation system: a novel associative classification model. Decision Support Systems, 48(3), 470-479. https://doi.org/10.1016/j.dss.2009.06.006
- Kaminskas, M., and Bridge, D. (2017). Diversity, serendipity, novelty, and coverage: A survey and empirical analysis of beyond-accuracy objectives in recommender systems. ACM Transactions on Interactive Intelligent Systems (TiiS), 7(1), 2.
- Kim, H. K., Kim, J. K., and Ryu, Y. U. (2009). Personalized recommendation over a customer network for ubiquitous shopping. IEEE Transactions on Services Computing, 2(2), 140-151. https://doi.org/10.1109/TSC.2009.7
- Kim, H., Ji, A., Ha, I., and Jo, G. (2010). Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation. Electronic Commerce Research and Applications, 9(1), 73-83. https://doi.org/10.1016/j.elerap.2009.08.004
- Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., and Riedl, J. (1997). GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM, 40(3), 77-87. https://doi.org/10.1145/245108.245126
- Koren, Y. (2010). Factor in the neighbors. ACM Transactions on Knowledge Discovery from Data, 4(1), 1-24. https://doi.org/10.1145/1644873.1644874
- Lawrence, R. D., Almasi, G. S., Kotlyar, V., Viveros, M., and Duri, S. S. (2001). Personalization of supermarket product recommendations. Applications of Data Mining to Electronic Commerce, Springer, New York.
- Lee, K., and Lee, K. (2015). Escaping your comfort zone: a graph-based recommender system for finding novel recommendations among relevant items. Expert Systems with Applications, 42(10), 4851-4858. https://doi.org/10.1016/j.eswa.2014.07.024
- Liang, T., Lai, H., and Ku, Y. (2007). Personalized content recommendation and user satisfaction: theoretical synthesis and empirical findings. Journal of Management Information Systems, 23(3), 45-70. https://doi.org/10.2753/MIS0742-1222230303
- Linden, G., Smith, B., and York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76-80. https://doi.org/10.1109/MIC.2003.1167344
- Liu, H., Hu, Z., Mian, A., Tian, H., and Zhu, X. (2014). A new user similarity model to improve the accuracy of collaborative filtering. Knowledge-Based Systems, 56, 156-166. https://doi.org/10.1016/j.knosys.2013.11.006
- Maxham, J. G. (2001). Service recovery's influence on consumer satisfaction, positive word-of-mouth, and purchase intentions. Journal of Business Research, 54(1), 11-24. https://doi.org/10.1016/S0148-2963(00)00114-4
- McGinty, L., and Smyth, B. (2003). On the role of diversity in conversational recommender systems. In International Conference on Case-Based Reasoning (pp. 276-290). Springer, Berlin, Heidelberg.
- McNee, S. M., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S. K., Rashid, A. M., Konstan, J. A., and Riedl, J. (2002). On the recommending of citations for research papers. In Proceedings of the 2002 ACM Conference on Computer Supported Cooperative Work, ACM, 116-125.
- McNee, S. M., Riedl, J., and Konstan, J. A. (2006). Being accurate is not enough: how accuracy metrics have hurt recommender systems. In CHI'06 extended abstracts on Human factors in computing systems (pp. 1097-1101). Acm.
- Moon, H. S., Kim, J. K., and Ryu, Y. U. (2013). A sequence-based filtering method for exhibition booth visit recommendations. International Journal of Information Management, 33(4), 620-626. https://doi.org/10.1016/j.ijinfomgt.2013.03.004
- Moon, H. S., Yoon, J. H., Choi, I. Y., and Kim, J. K. (2017). An exploratory study of collaborative filtering techniques to analyze the effect of information amount. Asia Pacific Journal of Information Systems, 27(2), 126-138. https://doi.org/10.14329/apjis.2017.27.2.126
- Mudambi, S. M., and Schuff, D. (2010). What makes a helpful review? A study of customer reviews on Amazon.com. MIS Quarterly, 34, 185-200. https://doi.org/10.2307/20721420
- Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469. https://doi.org/10.1177/002224378001700405
- Pu, P., Chen, L., and Hu, R. (2011). A user-centric evaluation framework for recommender systems. In Proceedings of the fifth ACM conference on Recommender systems (pp. 157-164). ACM.
- Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994). GroupLens: an open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, ACM, 175-186.
- Roca, J. C., Chiu, C., and Martinez, F. J. (2006). Understanding e-learning continuance intention: an extension of the technology acceptance model. International Journal of Human-Computer Studies, 64(8), 683-696. https://doi.org/10.1016/j.ijhcs.2006.01.003
- Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2000). Analysis of recommendation algorithms for e-commerce. In Proceedings of the 2nd ACM Conference on Electronic Commerce, ACM, 158-167.
- Shardanand, U., and Maes, P. (1995). Social information filtering: algorithms for automating "word of mouth". In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM Press/Addison-Wesley Publishing Co., 210-217.
- Smyth, B., and McClave, P. (2001). Similarity vs. diversity. Case-Based Reasoning Research and Development, Springer Verlag, Berlin.
- Sohn, J., and Suh, Y. M. (2006). Using degree of match to improve prediction quality in collaborative filtering systems. Information Systems Review, 8(2), 139-154.
- Suh, K. S., Lee, S., Suh, E. K., Kang, H., Lee, S., and Lee, U. K. (2014). Comparisons of popularity-and expert-based news recommendations: similarities and importance. Asia Pacific Journal of Information Systems, 24(2), 191-210. https://doi.org/10.14329/apjis.2014.24.2.191
- Thongpapanl, N., and Ashraf, A. R. (2011). Enhancing online performance through website content and personalization. Journal of Computer Information Systems, 52(1), 3-13.
- Tsai, C., and Hung, C. (2012). Cluster ensembles in collaborative filtering recommendation. Applied Soft Computing, 12(4), 1417-1425. https://doi.org/10.1016/j.asoc.2011.11.016
- Willemsen, M. C., Knijnenburg, B. P., Graus, M. P., Velter-Bremmers, L. C., and Fu, K. (2011). Using latent features diversification to reduce choice difficulty in recommendation lists. RecSys 2011, 14-20.
- Yu, K., Schwaighofer, A., Tresp, V., Xu, X., and Kriegel, H. (2004). Probabilistic memory-based collaborative filtering. IEEE Transactions on Knowledge and Data Engineering, 16(1), 56-69. https://doi.org/10.1109/TKDE.2004.1264822
- Zhao, L., and Lu, Y. (2012). Enhancing perceived interactivity through network externalities: an empirical study on micro-blogging service satisfaction and continuance intention. Decision Support Systems, 53(4), 825-834. https://doi.org/10.1016/j.dss.2012.05.019
- Zheng, N., Li, Q., Liao, S., and Zhang, L. (2010). Which photo groups should I choose? A comparative study of recommendation algorithms in Flickr. Journal of Information Science, 36(6), 733-750. https://doi.org/10.1177/0165551510386164
- Zhou, T., Kuscsik, Z., Liu, J. G., Medo, M., Wakeling, J. R., and Zhang, Y. C. (2010). Solving the apparent diversity-accuracy dilemma of recommender systems. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4511-4515. https://doi.org/10.1073/pnas.1000488107
- Zhou, X., Xu, Y., Li, Y., Josang, A., and Cox, C. (2012). The state-of-the-art in personalized recommender systems for social networking. Artificial Intelligence Review, 37(2), 119-132. https://doi.org/10.1007/s10462-011-9222-1
- Ziegler, C. N., McNee, S. M., Konstan, J. A., and Lausen, G. (2005). Improving recommendation lists through topic diversification. In Proceedings of the 14th International Conference on World Wide Web, ACM, 22-32.
- Zins, A. H., Bauemfeind, U., Missier, F., Venturini, A., and Rumetshofer, H. (2004). An experimental usability test for different destination recommender systems. Information and Communication Technologies in Tourism, Springer Verlag, New York.