Acknowledgement
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2016S1A3A2925146).
References
- Bagheri, A., Saraee, M., and De Jong, F. (2014). ADM-LDA: An aspect detection model based on topic modelling using the structure of review sentences. Journal of Information Science, 40(5), 621-636. https://doi.org/10.1177/0165551514538744
- Banerjee, S., Bhattacharyya, S., and Bose, I. (2017). Whose online reviews to trust? Understanding reviewer trustworthiness and its impact on business. Decision Support Systems, 96, 17-26. https://doi.org/10.1016/j.dss.2017.01.006
- Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993-1022.
- Chen, Y. S., Chen, L. H., and Takama, Y. (2015). Proposal of LDA-based sentiment visualization of hotel reviews. IEEE International Conference on Data Mining Workshop (ICDMW) Proceeding, 687-693.
- Cheng, Y. H., and Ho, H. Y. (2015). Social influence's impact on reader perceptions of online reviews. Journal of Business Research, 68(4), 883-887. https://doi.org/10.1016/j.jbusres.2014.11.046
- Chevalier, J. A., and Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345-354. https://doi.org/10.1509/jmkr.43.3.345
- Cho, S. Y., Choi, J. E., Lee, K. H., and Kim, H. W. (2015). An online review mining approach to a recommendation system. Information Systems Review, 17(3), 95-111. https://doi.org/10.14329/isr.2015.17.3.095
- Cho, S. Y., Kim, H. K., Kim, B. S., and Kim, H. W. (2014). Predicting movie revenue by online review mining: Using the opening week online review. Information Systems Review, 16(3), 111-132. https://doi.org/10.14329/isr.2014.16.3.113
- Cialdini, R. B. (2001). Harnessing the science of persuasion. Harvard Business Review, 79(9), 72-81.
- Cloud Vision API (2019). Cloud vision. [1] Retrieved from https://cloud.google.com/vision/Accessed 2018.1.20.
- Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.
- De Pelsmacker, P., Dens, N., and Kolomiiets, A. (2018). The impact of text valence, star rating and rated usefulness in online reviews. International Journal of Advertising, 37(3), 340-359. https://doi.org/10.1080/02650487.2018.1424792
- Fang, B., Ye, Q., Kucukusta, D., and Law, R. (2016). Analysis of the perceived value of online tourism reviews: Influence of readability and reviewer characteristics. Tourism Management, 52, 498-506. https://doi.org/10.1016/j.tourman.2015.07.018
- Filieri, R. (2016). What makes an online consumer review trustworthy? Annals of Tourism Research, 58, 46-64. https://doi.org/10.1016/j.annals.2015.12.019
- Filieri, R., McLeay, F., Tsui, B., and Lin, Z. (2018). Consumer perceptions of information helpfulness and determinants of purchase intention in online consumer reviews of services. Information & Management, 55(8), 956-970.
- Forman, C., Ghose, A., and Wiesenfeld, B. (2008). Examining the relationship between reviews and sales: The role of reviewer identity disclosure in electronic markets. Information Systems Research, 19(3), 291-313. https://doi.org/10.1287/isre.1080.0193
- Fu, X., Guo, L., Yanyan, G., and Zhiqiang, W. (2013). Multi-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet Lexicon. Knowledge-Based Systems, 37, 186-195. https://doi.org/10.1016/j.knosys.2012.08.003
- Gan, Q., Ferns, B. H., Yu, Y., and Jin, L. (2017). A text mining and multidimensional sentiment analysis of online restaurant reviews. Journal of Quality Assurance in Hospitality & Tourism, 18(4), 465-492. https://doi.org/10.1080/1528008X.2016.1250243
- Ghose, A., and Ipeirotis, P. G. (2011). Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics. IEEE Transactions on Knowledge and Data Engineering, 23(10), 1498-1512. https://doi.org/10.1109/TKDE.2010.188
- Gretzel, U., Sigala, M., Xiang, Z., and Koo, C. (2015). Smart tourism: Foundations and developments. Electronic Markets, 25(3), 179-188. https://doi.org/10.1007/s12525-015-0196-8
- Griffiths, T. L., and Steyvers, M. (2004). Finding scientific topics. The National Academy of Sciences of the United States of America Proceedings, 101(suppl 1), 5228-5235. https://doi.org/10.1073/pnas.0307752101
- Gu, B., and Ye, Q. (2014). First step in social media: Measuring the influence of online management responses on customer satisfaction. Production and Operations Management, 23(4), 570-582. https://doi.org/10.1111/poms.12043
- Guo, Y., Barnes, S. J., and Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using Latent Dirichlet allocation. Tourism Management, 59, 467-483. https://doi.org/10.1016/j.tourman.2016.09.009
- Hsu, W., Lee, M. L., and Zhang, J. (2002). Image mining: Trends and developments. Journal of Intelligent Information Systems, 19(1), 7-23. https://doi.org/10.1023/A:1015508302797
- Hu, N., Bose, I., Koh, N. S., and Liu, L. (2012). Manipulation of online reviews: An analysis of ratings, readability, and sentiments. Decision Support Systems, 52(3), 674-684. https://doi.org/10.1016/j.dss.2011.11.002
- Hu, N., Zhang, T., Gao, B., and Bose, I. (2019). What do hotel customers complain about? Text analysis using structural topic model. Tourism Management, 72, 417-426. https://doi.org/10.1016/j.tourman.2019.01.002
- Huang, A. H., Chen, K., Yen, D. C., and Tran, T. P. (2015). A study of factors that contribute to online review helpfulness. Computers in Human Behavior, 48, 17-27. https://doi.org/10.1016/j.chb.2015.01.010
- Hwang, Y., Choi, S., and Mattila, A. S. (2018). The role of dialecticism and reviewer expertise in consumer responses to mixed reviews. International Journal of Hospitality Management, 69, 49-55. https://doi.org/10.1016/j.ijhm.2017.10.009
- Hyam, R. (2017). Automated image sampling and classification can be used to explore perceived naturalness of urban spaces. PloS One, 12(1), e0169357.
- Jabr, W., Qi, Z., Lohtia, R., and Guillory, M. D. (2018). The influence of information display and availability on reviewer usefulness status. The proceedings of Americas Conference on Information Systems (AMCIS), 14-24.
- Janis, I., and Hovland, C. (1959). Personality and persuasibility. New Haven: Yale University Press, CT.
- Jeong, E., and Jang, S. S. (2011). Restaurant experiences triggering positive electronic word-of-mouth (eWOM) motivations. International Journal of Hospitality Management, 30(2), 356-366. https://doi.org/10.1016/j.ijhm.2010.08.005
- Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., and Li, S. (2013). Salient object detection: A discriminative regional feature integration approach. In Conference On Computer Vision and Pattern Recognition, IEEE, 2083-2090.
- Karimi, S., and Wang, F. (2017). Online review helpfulness: Impact of reviewer profile image. Decision Support Systems, 96, 39-48. https://doi.org/10.1016/j.dss.2017.02.001
- Kim, M., and Lennon, S. (2008). The effects of visual and verbal information on attitudes and purchase intentions in internet shopping. Psychology & Marketing, 25(2), 146-178. https://doi.org/10.1002/mar.20204
- Korfiatis, N., GarciA-Bariocanal, E., and SaNchez-Alonso, S. (2012). Evaluating content quality and helpfulness of online product reviews: The interplay of review helpfulness vs. review content. Electronic Commerce Research and Applications, 11(3), 205-217. https://doi.org/10.1016/j.elerap.2011.10.003
- Leary, B. (2018). Yelp's top 100 places to eat for 2018. Retrieved from https://www.yelpblog.com/2018/02/yelps-top-100-places-to-eat-for-2018/Accessed 2018.1.25.
- Lee, D., Gopal, A., and Lee, D. (2017). Micro-Giving: On the use of mobile devices and monetary subsidies in charitable giving. Available at SSRN 3280553.
- Lee, J., and Lee, H. J. (2016). Your expectation matters when you read online consumer reviews: The review extremity and the escalated confirmation effect. Asia Pacific Journal of Information Systems, 26(3), 449-476. https://doi.org/10.14329/apjis.2016.26.3.449
- Li, H., Wang, C. R., Meng, F., and Zhang, Z. (2018a). Making restaurant reviews useful and/or enjoyable? The impacts of temporal, explanatory, and sensory cues. International Journal of Hospitality Management. Online Publication.
- Li, L., Lee, K. Y., and Yang, S.-B. (2018b). Exploring the effect of heuristic factors on the popularity of user-curated 'Best places to visit' recommendations in an online travel community. Information Processing & Management. Online Publication.
- Li, X., Wu, C., and Mai, F. (2019). The effect of online reviews on product sales: A joint sentiment-topic analysis. Information & Management, 56(2), 172-184. https://doi.org/10.1016/j.im.2018.04.007
- Lin, T. M., Lu, K. Y., and Wu, J. J. (2012). The effects of visual information in eWOM communication. Journal of Research in Interactive Marketing, 6(1), 7-26. https://doi.org/10.1108/17505931211241341
- Lin, Y. S., and Huang, J. Y. (2006). Internet blogs as a tourism marketing medium: A case study. Journal of Business Research, 59(10-11), 1201-1205. https://doi.org/10.1016/j.jbusres.2005.11.005
- Liu, N., and Han, J. (2016). Dhsnet: Deep hierarchical saliency network for salient object detection. In Conference on Computer Vision and Pattern Recognition, IEEE, 678-686.
- Liu, Z., and Park, S. (2015). What makes a useful online review? Implication for travel product websites. Tourism Management, 47, 140-151. https://doi.org/10.1016/j.tourman.2014.09.020
- Louvigne, S., Uto, M., Kato, Y., and Ishii, T. (2018). Social constructivist approach of motivation: social media messages recommendation system. Behaviormetrika, 45(1), 133-155.
- Luca, M. (2016). Reviews, reputation, and revenue: The case of Yelp.com.
- Mawhinney, J. (2019). 45 Visual content marketing statistics you should know in 2019. Retrieved from https://blog.hubspot.com/marketing/visual-content-marketingstrategy#sm.0001sdcqnoj0qf67xfy1llpmev7v2/Accessed 2019.3.19.
- Mou, J., Ren, G., Qin, C., and Kurcz, K. (2019). Understanding the topics of export cross-border e-commerce consumers feedback: an LDA approach. Electronic Commerce Research, 1-29.
- Mudambi, S. M., and Schuff, D. (2010). Research note: What makes a helpful online review? A study of customer reviews on Amazon. com. MIS Quarterly, 34(1), 185-200. https://doi.org/10.2307/20721420
- Nazlan, N. H., Tanford, S., and Montgomery, R. (2018). The effect of availability heuristics in online consumer reviews. Journal of Consumer Behaviour, 17(5), 449-460. https://doi.org/10.1002/cb.1731
- Nikolenko, S. I., Koltcov, S. and Koltsova, O. (2017). Topic modelling for qualitative studies. Journal of Information Science, 43(1), 88-102. https://doi.org/10.1177/0165551515617393
- Park, E., Chae, B., and Kwon, J. (2018). The structural topic model for online review analysis: Comparison between green and non-green restaurants. Journal of Hospitality and Tourism Technology. Online publication.
- Park, S., and Nicolau, J. L. (2015). Asymmetric effects of online consumer reviews. Annals of Tourism Research, 50, 67-83. https://doi.org/10.1016/j.annals.2014.10.007
- Racherla, P., and Friske, W. (2012). Perceived 'usefulness' of online consumer reviews: An exploratory investigation across three services categories. Electronic Commerce Research and Applications, 11(6), 548-559. https://doi.org/10.1016/j.elerap.2012.06.003
- Reiley, L. (2015). Yelp heavy hitters talk about company's growing clout and struggles. Retrieved from https://www.tampabay.com/things-to-do/consumer/yelp-heavy-hitters-talk-about-companys-growing-clout-and-struggles/2242766/ Accessed 2018.1.15.
- Ren, G., and Hong, T. (2017). Investigating online destination images using a topic-based sentiment analysis approach. Sustainability, 9(10), 1765.
- Ryan, R. M., and Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54-67. https://doi.org/10.1006/ceps.1999.1020
- Schroeder, M. A., Lander, J., and Levine-Silverman, S. (1990). Diagnosing and dealing with multicollinearity. Western Journal of Nursing Research, 12(2), 175-187. https://doi.org/10.1177/019394599001200204
- Shin, D., He, S., Lee, G. M., Whinston, A. B., Cetintas, S., and Lee, K. C. (2016). Content complexity, similarity, and consistency in social media: A deep learning approach. SSRN Electronic Journal.
- Singh, P. V., Sahoo, N., and Mukhopadhyay, T. (2014). How to attract and retain readers in enterprise blogging? Information Systems Research, 25(1), 35-52. https://doi.org/10.1287/isre.2013.0509
- Singh, R., and Woo, J. (2019). Applications of machine learning models on Yelp data. Asia Pacific Journal of Information Systems, 29(1), 117-143. https://doi.org/10.14329/apjis.2019.29.1.117
- Tabachnick, B. G., and Fidell, L. S. (2007). Multivariate analysis of variance and covariance. Using Multivariate Statistics, 3, 402-407.
- Tirunillai, S., and Tellis, G. J. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent dirichlet allocation. Journal of Marketing Research, 51(4), 463-479. https://doi.org/10.1509/jmr.12.0106
- Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. https://doi.org/10.1287/isre.11.4.342.11872
- Vossen, P., Caselli, T., and Cybulska, A. (2018). How concrete do we get telling stories? Topics in Cognitive Science, 10(3), 621-640. https://doi.org/10.1111/tops.12366
- Vu, H. Q., Li, G., Law, R., and Zhang, Y. (2019). Exploring tourist dining preferences based on restaurant reviews. Journal of Travel Research, 58(1), 149-167. https://doi.org/10.1177/0047287517744672
- Wang, Y. S., Lin, H. H., and Liao, Y. W. (2012). Investigating the individual difference antecedents of perceived enjoyment in students' use of blogging. British Journal of Educational Technology, 43(1), 139-152. https://doi.org/10.1111/j.1467-8535.2010.01151.x
- Weiss, A. M., Lurie, N. H., and MacInnis, D. J. (2008). Listening to strangers: whose responses are valuable, how valuable are they, and why? Journal of Marketing Research, 45(4), 425-436. https://doi.org/10.1509/jmkr.45.4.425
- Xiang, Z., Du, Q., Ma, Y., and Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 51-65. https://doi.org/10.1016/j.tourman.2016.10.001
- Xu, P., Chen, L., and Santhanam, R. (2015). Will video be the next generation of e-commerce product reviews? Presentation format and the role of product type. Decision Support Systems, 73, 85-96. https://doi.org/10.1016/j.dss.2015.03.001
- Yang, S.-B., Hlee, S., Lee, J., and Koo, C. (2017a). An empirical examination of online restaurant reviews on Yelp. com: A dual coding theory perspective. International Journal of Contemporary Hospitality Management, 29(2), 817-839. https://doi.org/10.1108/IJCHM-11-2015-0643
- Yang, S.-B., Shin, S., Joun, Y., and Koo, C. (2017b). Exploring the comparative importance of online hotel reviews' heuristic attributes in review helpfulness: A conjoint analysis approach. Journal of Travel & Tourism Marketing, 34(7), 963-985. https://doi.org/10.1080/10548408.2016.1251872
- Yelp (2018). An Introduction to Yelp Metrics as of September 30, 2018. Retrieved from https://www.yelp.com/factsheet/ Accessed 2018.1.27.
- Yoo, K. H., and Gretzel, U. (2008). What motivates consumers to write online travel reviews? Information Technology & Tourism, 10(4), 283-295. https://doi.org/10.3727/109830508788403114
- Zhang, Y., and Lin, Z. (2018). Predicting the helpfulness of online product reviews: A multilingual approach. Electronic Commerce Research and Applications, 27, 1-10. https://doi.org/10.1016/j.elerap.2017.10.008