DOI QR코드

DOI QR Code

르완다 고등교육기관 학생들의 e-러닝 만족도 및 사용의도에 영향을 미치는 핵심요인 연구

Key Factors Affecting Students' Satisfaction and Intention to Use e-Learning in Rwanda's Higher Education

  • ;
  • 황기현 (숭실대학교 국제처/정보과학대학원)
  • Violaine, Akimana (Rwanda Utility Regulatory Authority (RURA)) ;
  • Hwang, Gee-Hyun (Office of International Affairs/Graduate School of Information Science, Soongsil University)
  • 투고 : 2019.04.01
  • 심사 : 2019.05.20
  • 발행 : 2019.05.28

초록

본 연구는 e-러닝 시스템의 채택과 사용에 대한 사용자들의 의사결정 과정에 영향을 미치는 핵심 요인들을 탐색하는 것을 목적으로 한다. 이를 위해 르완다의 고등 교육 기관에서 네 가지 독립 요인이 학생들의 e-러닝 시스템 만족도와 사용 의도에 영향을 미치는지를 검증하기 위해 UTAUT와 IS 성공 모델을 통합한 새로운 연구모형을 제안했다. 연구모델에 입각하여 설문지를 작성하고 르완다 대학교와 개신교 사회과학원 학생들의 설문조사를 통해 최종적으로 206개의 실증적 데이터가 수집되었다. 분석 결과에 따르면 사회적 영향을 제외한 성과기대, 노력기대, 촉진 조건 등 3개 요인은 e-러닝 시스템에 대한 학생들의 만족도 및 사용 의향에 유의한 영향을 미쳤다. 본 연구는 대학 관리자가 학생들의 e-러닝 채택 및 사용에 영향을 미치는 핵심요인들을이해하고, 이들연구결과를르완다고등교육기관의 e-러닝 프로젝트 설계 및 추진 계획 수립에 반영할 수 있다. 궁극적으로는 르완다 정부가 학생 니즈 중심으로 올바른 e-러닝 교육정책을 수립하고 적절한 자원 배분을 계획하는 데 기여할 수 있다.

This study aims to explore key factors which influence user's decision-making on the adoption of e-learning. We integrated UTAUT and Information Success Models to test that four independent factors affect student satisfaction to use e-learning in Rwanda's higher education. Data was collected by surveying students of University of Rwanda and Protestant Institute of Social Sciences (n=206). The analysis results showed that performance expectancy, facilitating conditions and effort expectancy except for social influence have a significant effect on students' satisfaction. This can help university administrators understand the factors that influence students' adoption of e-learning and incorporate these results into Rwanda's e-learning design and implementation. In final, Rwanda's government can contribute to establishing the e-learning policy and allocating its relevant resources centered on student needs.

키워드

DJTJBT_2019_v17n5_99_f0001.png 이미지

Fig. 1. Original UTAUT Model[12]

DJTJBT_2019_v17n5_99_f0002.png 이미지

Fig. 2. Revised Model of DeLone & McLean[13]

DJTJBT_2019_v17n5_99_f0003.png 이미지

Fig. 3. Integrated Research Model

Table 1. Measurements Construct and Items

DJTJBT_2019_v17n5_99_t0001.png 이미지

Table 2. Reliability and Discriminant Validity test

DJTJBT_2019_v17n5_99_t0002.png 이미지

Table 3. Structural Model fit test

DJTJBT_2019_v17n5_99_t0003.png 이미지

Table 4. The Summary of hypothesis testing

DJTJBT_2019_v17n5_99_t0004.png 이미지

참고문헌

  1. S. Siritongthaworn, D. Krairit, N. J. Dimmitt & H. Paul. (2006). The study of e-Learning technology implementation: a preliminary investigation of universities in Thailand. Education and Information Technologies, 11(2), 137-160. https://doi.org/10.1007/s11134-006-7363-8
  2. A, Gronlund & Y. M. Islam. (2010). A mobile e-Learning environment for developing countries: the Bangladesh virtual interactive classroom. Information Technology for Development, 16(4), 244-259. https://doi.org/10.1080/02681101003746490
  3. K. Shraim, & Z. Khlaif. (2010). An e-Learning approach to secondary education in Palestine: opportunities and challenges. Information Technology for Development, 16(3), 159-173. https://doi.org/10.1080/02681102.2010.501782
  4. R. Santhanam, S. Sasidharan & J. Webster. (2008). Using self-regulatory learning to enhance e-Learning-based information technology training. Information Systems Research, 19(1), 26-47. https://doi.org/10.1287/isre.1070.0141
  5. J. Kim, J. Jung, J Jo& H. Lim. (2019). A Study on the Effectiveness of e-learning video class using the online learning judgement system : Focused on the social studies classes in Elementary school. Journal of the Korea Convergence Society, 10(2), 141-148 https://doi.org/10.15207/JKCS.2019.10.2.141
  6. Y. M. Son & B. S. Jung. (2015). Convergence Development of Video and E-learning System for Education Disabled Students. Journal of the Korea Convergence Society, 6(4), 113-119. https://doi.org/10.15207/JKCS.2015.6.4.113
  7. H. D. Lee & M. W. Nam. (2018). The Analysis of Academic Achievement based on Spatio-Temporal Data Relate to e-Learning Patterns of University e-Learning Learners. Journal of Convergence for Information Technology, 8(4), 247-253. https://doi.org/10.22156/CS4SMB.2018.8.4.247
  8. T. I. Han. (2015). A Study on the Technical Evaluation of the Quality Certification for e-Learning Contents. Journal of Digital Convergence, 13(1), 49-66. https://doi.org/10.14400/JDC.2015.13.1.49
  9. Ministry of Youth and ICT (2012). Rwanda ICT Sector Profile : Measuring ICT sector performance and Tracking ICT for Development (ICT4D) towards Rwanda Socio-Economic Transformation. Kigali.
  10. R. Agarwal & J. Prasad. (1998). The antecedents and consequences of user perceptions in information technology adoption. Decision Support Systems, 22, 15-29. https://doi.org/10.1016/S0167-9236(97)00006-7
  11. S. Taylor & P. A. Todd. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6(4), 144-176. https://doi.org/10.1287/isre.6.2.144
  12. V. Venkatesh, M. G. Morris, G. B. Davis & F. D. Davis. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  13. W. H. DeLone & E. R. McLean. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.11045748
  14. C. H. Jung & S. H. Namn. (2014). Cloud Computing Acceptance at Individual Level Based on Extended UTAUT. Journal of Digital Convergence, 12(1), 287-294. https://doi.org/10.14400/JDPM.2014.12.1.287
  15. M. R. Eom, W. J. Choi & Y. H. Song. (2018). Exploring the Educational Needs of Learning Supporting Program on the Students' Perception of Current Competencies and Important Competencies. Journal of Convergence for Information Technology, 8(3), 175-181. https://doi.org/10.22156/CS4SMB.2018.8.3.175
  16. X. Zhao, A. S. Mattila & L. S. E. Tao. (2008). The role of post-training self-efficacy in customers' use of self-service technologies. International Journal of Service Industry Management, 19(4), 492-505. https://doi.org/10.1108/09564230810891923
  17. W. H. Delone & E. R. Mclean. (2003). The DeLone and McLean model of information systems success: Aten-year update. Journal of Management Information Systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.11045748
  18. A. Bhattacherjee. (2001). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201-214. https://doi.org/10.1016/S0167-9236(01)00111-7
  19. H. C. Song. (2018). A Study of Factors Affecting on m-learning Satisfaction based on UTAUT. Journal of Digital Convergence, 16(7), 123-129. https://doi.org/10.14400/JDC.2018.16.7.123
  20. U. Konradta, T. Christophersena & U. Schaeffer-Kuelzb. (2006). Predicting user satisfaction, strain and system usage of employee self-services. International Journal of Human-Computer Studies, 64(11), 1141-1153. https://doi.org/10.1016/j.ijhcs.2006.07.001
  21. J. F. Jr. Hair, R. E. Anderson, R. L. Tatham & W. C. Black. (1998). Multivariate Data Analysis. (5th Edition). Upper Saddle River, NJ: Prentice Hall.
  22. H. S. Suh & S. H. Park. (2011). Study on the Innovation Acceptance Characteristics for Digital Convergence Products. Journal of Digital Convergence, 9(4), 51-67. https://doi.org/10.14400/JDPM.2011.9.4.051
  23. K. K. Seo. (2016). Analysis of use intention of mobile cloud service using a convergence technology acceptance model. Journal of Digital Convergence, 14(12), 105-110. https://doi.org/10.14400/JDC.2016.14.12.105
  24. T. D. Thomas, L. Singh & K. Gaffar. (2013). The utility of the UTAUT model in explaining mobile learning adoption in higher education in Guyana. JEDICT, 9(3), 71-85.
  25. J. M. Kihoro, P. A. Oyier, B. M. Kiula, J. M. Wafula & R. W. Ibukah. (2013). E-Learning Eco-system for Mobility and Effective Learning: A Case of JKUAT IT Students. In IST-Africa 2013 Conference, 1-9.