References
- Y. Kimura, S. Masaki, H. Sagara, Evaluation of proliferation resistance of plutonium based on decay heat, J. Nucl. Sci. Technol. 48 (5) (2011) 715-723. https://doi.org/10.1080/18811248.2011.9711754
- G. Kessler, Proliferation-proof Uranium/Plutonium Fuel Cycles, Safeguards and Non-proliferation, first ed., KIT Scientific Publishing, Karlsruhe, 2011.
- IAEA, Information Circular, INFCIRC/ 153, 1972.
- C. Lloyd, B. Goddard, Proliferation resistant plutonium: an updated analysis, Nucl. Eng. Des. 330 (2018) 297-302. https://doi.org/10.1016/j.nucengdes.2018.02.012
- S. Fetter, V.A. Frolov, M. Miller, R. Mozley, O.F. Prilutsky, S.N. Rodionov, R.Z. Sagdeev, Detecting Nuclear Warheads, Sci. Global Secur. 1 (1990) 225-302. https://doi.org/10.1080/08929889008426333
- J.N. Mitchell, M. Stan, D.S. Schwartz, C.J. Boehlert, Phase stability and phase transformations in plutonium and plutonium-gallium alloys, Metall. Mater. Trans. 35A (2004) 2267-2278.
- J. Malone, A. Totemeier, N. Shapiro, S. Vaidyanathan, Lightbridge corporation's advanced metallic fuel for light water reactors, Nucl. Technol. 180 (3) (2012) 437-442. https://doi.org/10.13182/NT12-A15354
- S.C. Chapra, R.P. Canale, Numerical Methods for Engineers, 7 ed., McGraw-Hill, New York, 2015.
- IAEA, Thermophysical Properties of Materials for Nuclear Engineering, A Tutorial and Collection of Data, Vienna, 2008.
- S.S. Hecker, Plutonium and its Alloys: from Atoms to Microstructure, 2000.
-
G. Kessler, Plutonium denaturing by
${238}Pu$ , Nucl. Sci. Eng. 155 (2007) 53-73. https://doi.org/10.13182/NSE07-A2644 - Y.A. Cengel, Heat Transfer: a Practical Approach, second ed., McGraw-Hill, New York, NY, 2003.
- R.K. Weese, A.K. Burnham, H.C. Turner, T.D. Tran, Exploring the physical, chemical and thermal characteristics of a new potentially insensitive high explosive RX-55-AE-5, J. Therm. Anal. Calorim. 89 (2) (2007) 465-473. https://doi.org/10.1007/s10973-006-8163-4
- M.W. Biddulph, R.P. Burford, Thermal properties and heat transfer coefficients in cryogenic cooling, Cryogenics 22 (6) (1982) 283-286. https://doi.org/10.1016/0011-2275(82)90058-3
- A. Goldberg, Atomic, Crystal, Elastic, Thermal, Nuclear, and Other Properties of Beryllium, UCRL-TR-224850, 2006. LLNL.
- J.M. Gere, B.J. Goodno, Mechanics of Materials SI, Cengage Learning, Stanford, CT, 2012.
- B. Banerjee, D.O. Adams, On predictiong the effective elastic properties of polymer bonded explosives using recursive cell method, Int. J. Solid Struct. 41 (2) (2004) 481-509. https://doi.org/10.1016/j.ijsolstr.2003.09.016
- S.J.P. Palmer, J.E. Field, J.M. Huntley, Deformation, strengths, and strains to failure of polymer bonded explosives, Proc. of the Roy. Soc. A 440 (1909) 1993.
- D.G. Thompson, G.W. Brown, R. Deluca, A.M. Giambra, M.M. Sandstrom, Thermal expansion of PBX 9501 and PBX 9502 plastic-bonded explosives, LA-UR-09-05002, 37th meet. Of the nor, Amer. The. Ana. Soc. September 21 (2009) (Lubbock, TX).
- The Proliferation Resistance and Physical Protection Evaluation Methodology Working Group of the Generation IV International Forum. Evaluation Methodology for Proliferation Resistance and Physical Protection of Generation IV Nuclear Energy Systems.
- C.G. Bathke, B.B. Ebbinghaus, B.A. Collins, B.W. Sleaford, K.R. Hase, M. Robel, R.K. Wallace, K.S. Bradley, J.R. Ireland, G.D. Jarvinen, M.W. Johnson, A.W. Prichard, B.W. Smitj, The attractiveness of materials in advanced nuclear fuel cycles for various proliferation and theft scenarios, Nucl. Technol. 179 (1) (2017) 5-30.
- L.M. Pierpoint, Analyzing the Proliferation Resistance of Advanced Nuclear Fuel Cycles: in Search of an Assessment Method for Use in Fuel Cycle Simulations, Thesis, Massachusetts Institute of Technology, Feb. 2008.
Cited by
- The effects of U-232 on enrichment and material attractiveness over time vol.352, 2019, https://doi.org/10.1016/j.nucengdes.2019.110175
- Ability of non-destructive assay techniques to identify sophisticated material partial defects vol.52, pp.6, 2019, https://doi.org/10.1016/j.net.2019.11.008