• Title/Summary/Keyword: Plutonium

Search Result 114, Processing Time 0.027 seconds

PLUTONIUM MANAGEMENT OPTIONS: LIABILITY OR RESOURCE

  • Bairiot, Hubert
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.9-20
    • /
    • 2008
  • Since plutonium accounts for 40-50% of the power produced by uranium fuels, spent fuel contains only residual plutonium. Management of this plutonium is one of the aspects influencing the choice of a fuel cycle back-end option: reprocessing, direct disposal or wait-and-see. Different grades and qualities of plutonium exist depending from their specific generation conditions; all are valuable fissile material. Safeguard authorities watch the inventories of civil plutonium, but access to those data is restricted. Independent evaluations have led to an estimated current inventory of 220t plutonium in total (spent fuel, separated civil plutonium and military plutonium). If used as MOX fuel, it would be sufficient to feed all the PWRs and BWRs worldwide during 7 years or to deploy a FBR park corresponding to 150% of today' s installed nuclear capacity worldwide, which could then be exploited for centuries with the current stockpile of depleted and spent uranium. The energy potential of plutonium deteriorates with storage time of spent fuel and of separated plutonium, due to the decay of $^{241}Pu$, the best fissile isotope, into americium, a neutron absorber. The loss of fissile value of plutonium is more pronounced for usage in LWRs than in FBR. However, keeping the current plutonium inventory for an expected future deployment of FBRs is counterproductive. Recycling plutonium reduce the required volume for final disposal in an underground repository and the cost of final disposal. However, the benefits of utilizing an energy resource and of reducing final disposal liabilities are not the only aspects that determine the choice of a back-end policy.

Verification of Graphite Isotope Ratio Method Combined With Polynomial Regression for the Estimation of Cumulative Plutonium Production in a Graphite-Moderated Reactor

  • Kim, Kyeongwon;Han, Jinseok;Lee, Hyun Chul;Jang, Junkyung;Lee, Deokjung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.447-457
    • /
    • 2021
  • Graphite Isotope Ratio Method (GIRM) can be used to estimate plutonium production in a graphite-moderated reactor. This study presents verification results for the GIRM combined with a 3-D polynomial regression function to estimate cumulative plutonium production in a graphite-moderated reactor. Using the 3-D Monte-Carlo method, verification was done by comparing the cumulative plutonium production with the GIRM. The GIRM can estimate plutonium production for specific sampling points using a function that is based on an isotope ratio of impurity elements. In this study, the 10B/11B isotope ratio was chosen and calculated for sampling points. Then, 3-D polynomial regression was used to derive a function that represents a whole core cumulative plutonium production map. To verify the accuracy of the GIRM with polynomial regression, the reference value of plutonium production was calculated using a Monte-Carlo code, MCS, up to 4250 days of depletion. Moreover, the amount of plutonium produced in certain axial layers and fuel pins at 1250, 2250, and 3250 days of depletion was obtained and used for additional verification. As a result, the difference in the total cumulative plutonium production based on the MCS and GIRM results was found below 3.1% with regard to the root mean square (RMS) error.

Determination of Plutonium Present in Highly Radioactive Irradiated Fuel Solution by Spectrophotometric Method

  • Dhamodharan, Krishnan;Pius, Anitha
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.727-732
    • /
    • 2016
  • A simple and rapid spectrophotometric method has been developed to enable the determination of plutonium concentration in an irradiated fuel solution in the presence of all fission products. An excess of ceric ammonium nitrate solution was employed to oxidize all the valence states of plutonium to +6 oxidation state. Interference due to the presence of fission products such as ruthenium and zirconium, and corrosion products such as iron in the envisaged concentration range, as in the irradiated fuel solution, was studied in the determination of plutonium concentration by the direct spectrophotometric method. The stability of plutonium in +6 oxidation state was monitored under experimental conditions as a function of time. Results obtained are reproducible, and this method is applicable to radioactive samples resulting before the solvent extraction process during the reprocessing of fast reactor spent fuel. An analysis of the concentration of plutonium shows a relative standard deviation of <1.2% in standard as well as in simulated conditions. This reflects the fast reactor fuel composition with respect to uranium, plutonium, fission products such as ruthenium and zirconium, and corrosion products such as iron.

Time dependent heat transfer of proliferation resistant plutonium

  • Lloyd, Cody;Hadimani, Ravi;Goddard, Braden
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.510-517
    • /
    • 2019
  • Increasing proliferation resistance of plutonium by way of increased $^{238}Pu$ content is of interest to the nuclear nonproliferation and international safeguards community. Considering the high alpha decay heat of $^{238}Pu$, increasing the isotopic fraction leads to a noticeably higher amount of heat generation within the plutonium. High heat generation is especially unattractive in the scenario of weaponization. Upon weaponization of the plutonium, the plutonium may generate enough heat to elevate the temperature in the high explosives to above its self-explosion temperature, rendering the weapon useless. In addition, elevated temperatures will cause thermal expansion in the components of a nuclear explosive device that may produce thermal stresses high enough to produce failure in the materials, reducing the effectiveness of the weapon. Understanding the technical limit of $^{238}Pu$ required to reduce the possibility of weaponization is key to reducing the current limit on safeguarded plutonium (greater than 80 at. % $^{238}Pu$). The plutonium vector evaluated in this study was found by simulating public information on Lightbridge's fuel design for pressurized water reactors. This study explores the temperature profile and maximum stress within a simple (first generation design) hypothetical nuclear explosive device of four unique scenarios over time. Analyzing the transient development of both the temperature profile and maximum stress not only establishes a technical limit on the $^{238}Pu$ content, but also establishes a time limit for which each scenario would be useable.

Computational and experimental forensics characterization of weapons-grade plutonium produced in a thermal neutron environment

  • Osborn, Jeremy M.;Glennon, Kevin J.;Kitcher, Evans D.;Burns, Jonathan D.;Folden, Charles M.III;Chirayath, Sunil S.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.820-828
    • /
    • 2018
  • The growing nuclear threat has amplified the need for developing diverse and accurate nuclear forensics analysis techniques to strengthen nuclear security measures. The work presented here is part of a research effort focused on developing a methodology for reactor-type discrimination of weapons-grade plutonium. To verify the developed methodology, natural $UO_2$ fuel samples were irradiated in a thermal neutron spectrum at the University of Missouri Research Reactor (MURR) and produced approximately $20{\mu}g$ of weapons-grade plutonium test material. Radiation transport simulations of common thermal reactor types that can produce weapons-grade plutonium were performed, and the results are presented here. These simulations were needed to verify whether the plutonium produced in the natural $UO_2$ fuel samples during the experimental irradiation at MURR was a suitable representative to plutonium produced in common thermal reactor types. Also presented are comparisons of fission product and plutonium concentrations obtained from computational simulations of the experimental irradiation at MURR to the nondestructive and destructive measurements of the irradiated natural $UO_2$ fuel samples. Gamma spectroscopy measurements of radioactive fission products were mostly within 10%, mass spectroscopy measurements of the total plutonium mass were within 4%, and mass spectroscopy measurements of stable fission products were mostly within 5%.

Coulometric Determination of Plutonium in PWR Spent Fuels (PWR 사용후핵연료내 플루토늄의 전기량적 정량)

  • Sohn, Se Chul;Suh, Moo Yul;Kim, Jung Suk;Song, Byung Chul;Jee, Kwang Yong;Choi,In Kyu;Kim, Won Ho
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.581-586
    • /
    • 2000
  • Separation and coulometric titration method were applied for the determination of plutonium content in samples of PWR spent fuel. Plutonium was separated on an anion exchange(AG MP-1) column and determined by the controlled-potential coulometric titration. In this study, we discussed some experimental conditions related to the separation and determination of plutonium in PWR spent fuel samples. Average accuracy(recovery of plutonium) for the determination of 0.230∼3.02 mg plutonium standard was 99.36%. Average precision(relative standard deviation, RSD) for the determination of 0.250∼0.450 mg plutonium in PWR spent fuel samples was 0.38%.

  • PDF

Experimental validation of a nuclear forensics methodology for source reactor-type discrimination of chemically separated plutonium

  • Osborn, Jeremy M.;Glennon, Kevin J.;Kitcher, Evans D.;Burns, Jonathan D.;Folden, Charles M. III;Chirayath, Sunil S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.384-393
    • /
    • 2019
  • An experimental validation of a nuclear forensics methodology for the source reactor-type discrimination of separated weapons-useable plutonium is presented. The methodology uses measured values of intra-element isotope ratios of plutonium and fission product contaminants. MCNP radiation transport codes were used for various reactor core modeling and fuel burnup simulations. A reactor-dependent library of intra-element isotope ratio values as a function of burnup and time since irradiation was created from the simulation results. The experimental validation of the methodology was achieved by performing two low-burnup experimental irradiations, resulting in distinct fuel samples containing sub-milligram quantities of weapons-useable plutonium. The irradiated samples were subjected to gamma and mass spectrometry to measure several intra-element isotope ratios. For each reactor in the library, a maximum likelihood calculation was utilized to compare the measured and simulated intra-element isotope ratio values, producing a likelihood value which is proportional to the probability of observing the measured ratio values, given a particular reactor in the library. The measured intra-element isotope ratio values of both irradiated samples and its comparison with the simulation predictions using maximum likelihood analyses are presented. The analyses validate the nuclear forensics methodology developed.

Plutonium mass estimation utilizing the (𝛼,n) signature in mixed electrochemical samples

  • Gilliam, Stephen N.;Coble, Jamie B.;Goddard, Braden
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2004-2010
    • /
    • 2022
  • Quantification of sensitive material is of vital importance when it comes to the movement of nuclear fuel throughout its life cycle. Within the electrorefiner vessel of electrochemical separation facilities, the task of quantifying plutonium by neutron analysis is especially challenging due to it being in a constant mixture with curium. It is for this reason that current neutron multiplicity methods would prove ineffective as a safeguards measure. An alternative means of plutonium verification is investigated that utilizes the (𝛼,n) signature that comes as a result of the eutectic salt within the electrorefiner. This is done by utilizing the multiplicity variable a and breaking it down into its constituent components: spontaneous fission neutrons and (𝛼,n) yield. From there, the (𝛼,n) signature is related to the plutonium content of the fuel.

Feasibility Study of Isotope Ratio Analysis of Individual Uranium-Plutonium Mixed Oxide Particles with SIMS and ICP-MS

  • Esaka, Fumitaka;Magara, Masaaki;Suzuki, Daisuke;Miyamoto, Yutaka;Lee, Chi-Gyu;Kimura, Takaumi
    • Mass Spectrometry Letters
    • /
    • v.2 no.4
    • /
    • pp.80-83
    • /
    • 2011
  • Isotope ratio analysis of nuclear materials in individual particles is of great importance for nuclear safeguards. Although secondary ion mass spectrometry (SIMS) and thermal ionization mass spectrometry (TIMS) are utilized for the analysis of individual uranium particles, few studies were conducted for the analysis of individual uranium-plutonium mixed oxide particles. In this study, we applied SIMS and inductively coupled plasma mass spectrometry (ICP-MS) to the isotope ratio analysis of individual U-Pu mixed oxide particles. In the analysis of individual U-Pu particles prepared from mixed solution of uranium and plutonium standard reference materials, accurate $^{235}U/^{238}U$, $^{240}Pu/^{239}Pu$ and $^{242}Pu/^{239}Pu$ isotope ratios were obtained with both methods. However, accurate analysis of $^{241}Pu/^{239}Pu$ isotope ratio was impossible, due to the interference of the $^{241}Am$ peak to the $^{241}Pu$ peak. In addition, it was indicated that the interference of the $^{238}UH$ peak to the $^{239}Pu$ peak has a possibility to prevent accurate analysis of plutonium isotope ratios. These problems would be avoided by a combination of ICP-MS and chemical separation of uranium, plutonium and americium in individual U-Pu particles.

Separation of Plutonium Oxidation States by Ion Chromatography (이온크로마토그래피를 이용한 산화수별 플루토늄의 분리)

  • Kim, Seung Soo;Jun, Kwan Sik;Kang, Chul Hyung
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.28-33
    • /
    • 2001
  • The ion chromatography for the separation of plutonium species which are suggested to be $Pu^{3+}$, $Pu^{4+}$, $PuO_2{^+}$ and $PuO_2{^{2+}}$ in natural water was studied. Two separation methods were performed; 1) two-column method containing each of $SiO^-$ and SiO-$SO_3{^-}$ cation exchanger, 2) IC with AG11 column and the eluent of oxalate/nitric acid. Separation conditions for $Eu^{3+}$, $Th^{4+}$, $NpO_2{^+}$, $UO_2{^{2+}}$ in place of plutonium species were acquired from preliminary tests. When these conditions were applied to separate the plutonium species, two-column method was separated them successfully. However, the IC method with oxalate eluent was difficult in the separation of plutonium species due to the change of $Pu^{3+}$ and $PuO_2{^{2+}}$ to $Pu^{4+}$ and $PuO_2{^+}$ respectively.

  • PDF