DOI QR코드

DOI QR Code

Evaluation of Soil-Water Characteristic Curve for Domestic Bentonite Buffer

국내 벤토나이트 완충재의 함수특성곡선 평가

  • Received : 2018.10.12
  • Accepted : 2019.01.21
  • Published : 2019.03.31

Abstract

High-level radioactive waste (HLW) such as spent fuel is inevitably produced when nuclear power plants are operated. A geological repository has been considered as one of the most adequate options for the disposal of HLW, and it will be constructed in host rock at a depth of 500~1,000 meters below ground level with the concept of an engineered barrier system (EBS) and a natural barrier system. The compacted bentonite buffer is one of the most important components of the EBS. As the compacted bentonite buffer is located between disposal canisters with spent fuel and the host rock, it can restrain the release of radionuclides and protect canisters from the inflow of groundwater. Because of inflow of groundwater into the compacted bentonite buffer, it is essential to investigate soil-water characteristic curves (SWCC) of the compacted bentonite buffer in order to evaluate the entire safety performance of the EBS. Therefore, this paper conducted laboratory experiments to analyze the SWCC for a Korean Ca-type compacted bentonite buffer considering dry density, confined or unconfined condition, and drying or wetting path. There was no significant difference of SWCC considering dry density under unconfined condition. Furthermore, it was found that there was higher water suction in unconfined condition that in confined condition, and higher water suction during drying path than during wetting path.

원자력발전소를 운영하게 되면 사용후핵연료와 같은 고준위방사성폐기물이 필연적으로 발생한다. 이러한 고준위방사성폐기물을 처분하기 위해 심층처분방식이 가장 적합한 대안으로 알려져 있으며 고준위방사성폐기물은 공학적방벽과 천연방벽에 둘러 쌓여 지하 500~1,000 m 깊이의 심지층에 처분된다. 이 중 압축 벤토나이트 완충재는 공학적방벽의 가장 중요한 구성요소이다. 완충재는 처분용기와 자연 암반 사이에 위치해 있기에 주변 지하수 흐름으로부터 처분용기를 보호하고 처분 용기로부터 핵종이 유출되는 것을 저지하는 역할을 한다. 주변 지하수 흐름으로 인한 완충재의 불포화 함수특성 규명은 전체 공학적방벽의 성능을 평가하는데 있어 매우 중요하다고 할 수 있다. 따라서 본 연구에서는 실내 시험을 수행하여 국내 압축 벤토나이트 완충재의 건조밀도, 구속조건 여부, 그리고 건조 및 포화 이력에 따른 압축 벤토나이트 완충재의 함수특성곡선을 도출하여 분석하였다. 구속 조건하에서 건조밀도에 따른 함수특성곡선은 큰 차이를 보이지 않았다. 또한 비구속 조건이 구속 조건에 비해 보다 큰 수분흡입력을 나타냈으며, 아울러 포화 과정보다 건조 과정에서 보다 큰 수분흡인력이 측정되었다.

Keywords

References

  1. S. Yoon, G.Y. Kim, and M.H. Baik, "A Prediction of Specific Heat Capacity for Compacted Bentonite Buffer", J. Nucl. Fuel Cycle Waste Technol., 15(3), 199-206 (2017). https://doi.org/10.7733/jnfcwt.2017.15.3.199
  2. J.O. Lee, W.J. Cho, and S. Kwon, "Thermo-hydro-mechanical Properties of Reference Bentonite Buffer for a Korean HLW Repository", Tunnel & Underground Space, 21(4), 264-273 (2011). https://doi.org/10.7474/TUS.2011.21.4.264
  3. J.O. Lee, G.Y. Kim, and S. Yoon, System Planning for Measuring Coupled THM Properties of Buffer: SWRC Measurement of Unsaturated Compacted Bentonite, Korea Atomic Energy Research Institute Report, KAERI/TR-7009 (2017).
  4. W.J. Cho, J.S. Kim, S. Yoon, and G.Y. Kim, Estimation of the Water Suction and Swelling Pressure of Compacted Bentonite at Elevated Temperature, Korea Atomic Energy Research Institute Report, KAERI/TR-7334 (2018).
  5. J. Rutqvist, L. Zheng, F. Chen, H.H. Liu, and J. Birkholzer, "Modeling of Coupled Thermo-hydro-mechanical Processes with Links to Geochemistry Associated with Bentonite-backfilled Repository Tunnels in Clay Formations", Rock Mech. Rock Eng., 47(1), 167-186 (2014). https://doi.org/10.1007/s00603-013-0375-x
  6. M.V. Villar and A. Lloret, "Influence of Temperature on the Hydro-mechanical Behavior of a Compacted Bentonite", Appl. Clay Sci., 26(1-4), 337-350 (2004). https://doi.org/10.1016/j.clay.2003.12.026
  7. P. Delage, D. Marcial, Y.J. Cui, and X. Ruiz, "Ageing Effects in a Compacted Bentonite: a Microstructure Approach", Geotechnique, 56(5), 291-304 (2006). https://doi.org/10.1680/geot.2006.56.5.291
  8. M.V. Villar, Thermo-Hydro-Mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository. State of the Art Report, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas Report, CIEMAT-1044 (2004).
  9. M. Wan, W.M. Ye, Y.G. Chen, Y.J. Cui, and J. Wang, "Influence of Temperature on the Water Retention Properties of Compacted GMZ01 Bentonite", Environ. Earth Sci., 73(8), 4053-4061 (2015). https://doi.org/10.1007/s12665-014-3690-y
  10. J.O. Lee, W.J. Cho, and S. Kwon, "Suction and Water Uptake in Unsaturated Compacted Bentonite", Ann. Nucl. Energy, 38(2-3), 520-526 (2011). https://doi.org/10.1016/j.anucene.2010.09.016
  11. B.M. Das, Principles of geotechnical engineering, 6th ed., Thomson Nelson, Toronto (2006).
  12. M. Yoo, H.J. Choi, M.S.Lee, and S.Y.Lee, "Measurement of Properties of Domestic Bentonite for a Buffer of an HLW Repository", J. Nucl. Fuel Cycle Waste Technol., 14(2), 135-147 (2016). https://doi.org/10.7733/jnfcwt.2016.14.2.135
  13. S. Yoon, W. Cho, C. Lee, and G.Y. Kim, "Thermal Conductivity of Korean Compacted Bentonite Buffer Materials for a Nuclear Waste Repository", Energies, 11(9), 2269 (2018). https://doi.org/10.3390/en11092269
  14. J.S. Kim, S. Yoon, W.J. Cho, Y.C. Choi, and G.Y. Kim, "A Study on the Manufacturing Characteristics and Field Applicability of Engineering-scale Bentonite Buffer in a High-level Nuclear Waste Repository", J. Nucl. Fuel Cycle Waste Technol., 16(1), 123-136 (2018). https://doi.org/10.7733/jnfcwt.2018.16.1.123
  15. WP4C Dew Point PotentiaMeter, Operator's manual, Decagon Device Inc. (2015).
  16. M.T. van Genuchten, "A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils", Soil Sci. Soc. Am. J., 44, 892-898 (1980). https://doi.org/10.2136/sssaj1980.03615995004400050002x
  17. Y. Mualem, "A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media", Water Resour. Res., 12(3), 513-522 (1976). https://doi.org/10.1029/WR012i003p00513
  18. J.O. Lee, H.J. Choi, and M.S. Lee, Concept of Gapfilling in the Buffer and Backfill of an HLW Repository: In Vertical Disposal Method, Korea Atomic Energy Research Institute Report, KAERI/TR-6141 (2015).
  19. W.J.Cho, J.S. Kim, S. Yoon, and G.Y. Kim, Estimation of the Water Suction and Swelling Pressure of Compacted Bentonite at Elevated Temperature, Korea Atomic Energy Research Institute Report, KAERI/TR-7334 (2018).
  20. J. Atkinson, The mechanics of soils and foundations, 2nd ed., CRC Press, Florida (2007).
  21. W.J. Likos, N. Lu, and J.W. Godt, "Hysteresis and Uncertainty in Soil Water-Retention Curve Parameters", J. Geotech. Geoenviron. Eng., 140(4), 04013050, 10.1061/(ASCE)GT.1943-5606.0001071 (2014).

Cited by

  1. Study on Thermal, Hydraulic, and Mechanical Properties of KURT Granite and Gyeongju Bentonite vol.17, pp.suppl, 2019, https://doi.org/10.7733/jnfcwt.2019.17.s.65
  2. 불포화 벤토나이트 완충재의 수분흡입력 측정기술 및 구성모델 고찰 vol.17, pp.3, 2019, https://doi.org/10.7733/jnfcwt.2019.17.3.329