DOI QR코드

DOI QR Code

Behavior Analysis of IPM Bridge and Rahmen Bridge

토압분리형 교량과 라멘교의 거동분석

  • Shin, Keun-Sik (Inter-Korean Highway Cooperation Agency, Korea Expressway Corporation) ;
  • Han, Heui-Soo (Department of Civil Engineering, Kumoh Institute of Technology)
  • 신근식 (한국도로공사 남북도로협력처) ;
  • 한희수 (금오공과대학교 토목공학과)
  • Received : 2019.01.31
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

IPM bridge is an integral bridge that can be applied from span 30.0m up to 120.0m, the shape conditions of IPM bridge is also applicable to the rahmen bridge. In this study, to perform the structural analysis of Rahmen bridge and IPM Bridge, the researchers compared the distribution types such as load, moment, and displacement of those bridges. Structural analysis was carried out on four span models ranging from single span bridges to four spans of 120.0 m, based on span length of 30.0 m. Structural analysis was carried out on those bridge with span 30.0m up to 120.0m. The conclusions drawn from this study are as follows. 1) The bending moments were calculated to be large for the Rahmen bridge, and the horizontal displacements were estimated to be large for the IPM bridge. 2) Since the bending moments are derived by the span length rather than the extension of the bridge, the permissible bending moment for the span length should be considered in the design. 3) The pile bent of the IPM bridge did not exceed the plastic moment of the steel pipe pile at 120.0m span, but because the horizontal displacement in the shrinkage direction is close to 25mm, the design considerations are needed. 4) In the actual design, it is important to ensure stability against member forces, so review of the negative moment is most important.

IPM Birdge는 경간장 30.0m에서부터 최대 120.0m까지 적용이 가능한 일체식 교량으로, 이러한 교량의 형상 조건은 라멘교에서도 적용가능하다. 교량의 형상조건은 유사하나 거동이 다른 IPM Bridge와 라멘교를 현장에 적용하기 위해, 두 교량의 공학적 우수성을 비교분석하는 과정이 필요하다. 본 연구에서는 라멘교와 IPM Bridge의 구조해석을 수행하여, IPM Bridge와 라멘교의 하중, 모멘트, 및 변위 등의 분포 형태를 비교분석하였다. 입력조건의 차이가 두 교량 형식의 거동에 영향을 미치지 않도록 동일한 조건에서 구조해석을 수행하였다. 구조해석은 경간 30.0m를 기준으로 단경간 교량부터 4경간 120.0m까지로 각 4개의 모델로 구조해석을 수행하였다. 본 연구로부터 도출된 결론은 다음과 같다. 1) 휨모멘트는 라멘교가 크게 산정되었고, 수평변위는 IPM Bridge가 크게 산정되었다. 2) 라멘교는 교량의 연장보다는 경간장에 의해 휨모멘트가 크게 도출되므로, 설계에서 경간장에 대한 허용 휨모멘트가 고려되어야 한다. 3) IPM Bridge의 파일벤트는 120.0m 경간에서도 강관말뚝의 소성모멘트를 초과하지 않았지만, 수축방향의 수평변위가 조인트 교량의 허용기준인 25mm에 근접하므로 설계 시 고려가 필요하다. 4) 실제 설계에서는 부재력에 대한 안정성을 확보하는 것이 중요하므로, 부 모멘트에 대한 검토가 가장 중요한 것으로 나타났다.

Keywords

SHGSCZ_2019_v20n4_597_f0001.png 이미지

Fig. 1. Typical integral abutment bridge with 2-spans [4]

SHGSCZ_2019_v20n4_597_f0002.png 이미지

Fig. 2. Schematic of IPM bridge [7]

SHGSCZ_2019_v20n4_597_f0003.png 이미지

Fig. 3. Behavior of pile and wall of IAB bridge [11]

SHGSCZ_2019_v20n4_597_f0004.png 이미지

Fig. 4. Stress distribution of reinforced soil by load of super-structure [12]; (a) Vertical earth pressure(b) Horizontal earth pressure

SHGSCZ_2019_v20n4_597_f0005.png 이미지

Fig. 5. Cross-section view for super-structure

SHGSCZ_2019_v20n4_597_f0006.png 이미지

Fig. 6. Time-dependent loads (drying shrinkage and creep)[8]; (a) Creep coefficient (b) Shrinkage strain

SHGSCZ_2019_v20n4_597_f0007.png 이미지

Fig. 7. Structural analysis model for IPM bridge(a) Section view; (b) Numerical model, (c) 3D model (60.0m with 2-span bridge)

SHGSCZ_2019_v20n4_597_f0008.png 이미지

Fig. 8. Multi-linear spring based on soil conditions

SHGSCZ_2019_v20n4_597_f0009.png 이미지

Fig. 9. Structural analysis model for rahmen bridge;(a) Section view, (b) Numerical model, (c) 3D model (120.0m with 4-span bridge)

SHGSCZ_2019_v20n4_597_f0010.png 이미지

Fig. 10. Comparison of bending moment of IPM bridge and rahmen bridge

SHGSCZ_2019_v20n4_597_f0011.png 이미지

Fig. 11. Comparison of contraction displacement of IPM bridge and rahmen bridge

SHGSCZ_2019_v20n4_597_f0012.png 이미지

Fig. 12. Comparison of negative bending moment of IPM bridge and rahmen bridge

SHGSCZ_2019_v20n4_597_f0013.png 이미지

Fig. 13. Comparison of expansion displacement of IPM bridge and rahmen bridge

Table 1. Temperature ranges and thermal-expansion coefficients [13]

SHGSCZ_2019_v20n4_597_t0001.png 이미지

References

  1. H. B. Kim, T. S. Kim, J. S. Park, H. S. Han, "Analysis of Minimum Penetrated Depth of Pile bent of IPM Bridge". Journal of the Korean Geo-environmental Society, Vol.18, No.5, pp.45-53, 2017. DOI: https://doi.org/10.14481/jkges.2017.18.5.45
  2. W. S. Kim, J. A. Laman, "Integral abutment bridge behavior under uncertain thermal and time-dependent load", Structural Engineering and Mechanics, Vol.46, No.1, pp.53-73, 2013. DOI: https://doi.org/10.12989/sem.2013.46.1.053
  3. S. M. Olson, K. P. Holloway, J. M. Buenker, J. H. Long, J. M. LaFave, "Thermal behavior of IDOT integral abutment bridges and proposed design modifications", FHWA-ICT-12-022, Illinois Center for Transportation, Illinois, pp.1-63, 2013.
  4. S. Arsoy, J. M. Duncan, R. M. Barker, "Behavior of a Semiintegral Bridge Abutment under Static and Temperature-Induced Cyclic Loading", Journal of Bridge Engineering, Vol.9, No.2, pp.193-199, 2004. DOI: https://doi.org/10.1061/(ASCE)1084-0702(2004)9:2(193
  5. M. Dicleli, S. M. Albhaisi, "Maximum length of integral bridges supported on steel H-piles driven in sand", Engineering structures, Vol.25, No.12, pp.1491-1504, 2003. DOI: https://doi.org/10.1016/S0141-0296(03)00116-0
  6. M. Feldmann, J. Naumes, D. Pak, M. Veljkovic, M. Nilsson, J. Eriksen, P. Collin, O. Kerokoski, H. Petursson, M. Verstraete, "Economic and durable design of composite bridges with integral abutments", European Commission Joint Research Centre, pp.140, 2010. DOI: https://doi.org/10.2777/91014
  7. M. S. Nam, J. N. Do, T. S. Kim, Y. H, Park, H. J. Kim, "Development of IPM Bridge", Korea Expressway Corperation Research Institute: Korea, 2016.
  8. M. C. Park, M. S. Nam, "Behavior of integral abutment bridge with partially protruded piles", Geomechanics and Engineering, Vol.14, No.6, pp.601-614, 2018. DOI: http://dx.doi.org/10.12989/gae.2018.14.6.601
  9. M. C. Park, M. S. Nam, "Numerical Analysis of the Behavior of an IPM Bridge According to Super-Structure and Sub-Structure Properties", Sustainability, 10(3), 833, 2018. DOI: https://doi.org/10.3390/su10030833
  10. M. Dicleli, S. Erhan, "Effect of soil and substructure properties on live-load distribution in integral abutment bridges", Journal of Bridge Engineering, Vol.13, No.5, pp. 527-539, 2008. DOI: https://doi.org/10.1061/(ASCE)1084-0702(2008)13:5(527)
  11. T. S. Kim, "Performance Verification and Behavior Analysis of Integrated and Pile Bented Abutment with Mechanically Stabilized Earth Wall Bridge(IPM Bridge)", Thesis paper, Kumoh National Institute of Technology. 2017.
  12. VTrans IAC. "Integral Abutment Bridge Design Guidelines, 2ed. VTrans Structures Section", Montpelier, Vermont: the State of Vermont, Agency of Transportation, 2008.
  13. MLTMA, "Road design manual", Ministry of Land, Transport and Maritime Affairs, 2008.
  14. CEB-FIP, "Model code 1990." Bulletin d'Information, 1990.
  15. KEC (2016). "IPM Bridge design Guidelines", Korea Expressway Corperation.
  16. KEC (2012). "Expressway Construction Guide Specification." Korea Expressway Corperation.
  17. L. C. Reese, W. R. Cox, F. D. Koop, "Analysis of laterally loaded piles in sand", Offshore Technology in Civil Engineering Hall of Fame Papers from the Early Years, OTC 2080, pp.95-105, 1974. DOI: https://doi.org/10.4043/2080-MS
  18. Korean Geotechnical Society, Structure foundation design standards specification, Ministry of Land, Transport and Maritime Affairs, 2015.