DOI QR코드

DOI QR Code

A Study on the Prediction Function of Wind Damage in Coastal Areas in Korea

국내 해안지역의 풍랑피해 예측함수에 관한 연구

  • Sim, Sang-bo (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Kim, Yoon-ku (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Choo, Yeon-moon (Department of Civil and Environmental Engineering, Pusan National University)
  • 심상보 (부산대학교 사회환경시스템공학과) ;
  • 김윤구 (부산대학교 사회환경시스템공학과) ;
  • 추연문 (부산대학교 사회환경시스템공학과)
  • Received : 2018.11.20
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

The frequency of natural disasters and the scale of damage are increasing due to the abnormal weather phenomenon that occurs worldwide. Especially, damage caused by natural disasters in coastal areas around the world such as Earthquake in Japan, Hurricane Katrina in the United States, and Typhoon Maemi in Korea are huge. If we can predict the damage scale in response to disasters, we can respond quickly and reduce damage. In this study, we developed damage prediction functions for Wind waves caused by sea breezes and waves during various natural disasters. The disaster report (1991 ~ 2017) has collected the history of storm and typhoon damage in coastal areas in Korea, and the amount of damage has been converted as of 2017 to reflect inflation. In addition, data on marine weather factors were collected in the event of storm and typhoon damage. Regression analysis was performed through collected data, Finally, predictive function of the sea turbulent damage by the sea area in 74 regions of the country were developed. It is deemed that preliminary damage prediction can be possible through the wind damage prediction function developed and is expected to be utilized to improve laws and systems related to disaster statistics.

전 세계적으로 발생하고 있는 이상기후현상으로 자연재해의 발생빈도와 피해규모가 증가하고 있는 추세이다. 특히, 일본의 대지진, 미국의 허리케인 카트리나, 한국의 태풍 매미 등 세계적으로 연안지역에서 발생하는 자연재해에 의한 피해는 막대하다. 재해대응 차원에서 피해 규모를 예측할 수 있다면 신속하게 대응하여 피해를 저감할 수 있다고 판단된다. 따라서, 본 연구에서는 여러 가지 자연재해 중 해풍과 파랑에 의해 발생하는 풍랑에 관한 피해예측함수를 개발하였다. 국내의 연안지역을 대상으로 재해연보('1991~'2017)의 풍랑 및 태풍피해 이력을 수집하였으며, 물가상승률을 반영하기 위해 2017년을 기준으로 피해액을 환산하였다. 또한, 풍랑 및 태풍피해가 발생했을 때의 해양기상인자 자료를 수집하였다. 수집된 자료를 통하여 회귀분석을 실시하였으며, 최종적으로, 연안의 지역특성을 반영하여 전국 74개 지역의 해역별 풍랑 피해예측함수를 개발하였다. 개발된 풍랑피해 예측함수를 통하여 사전대비 차원의 피해예측이 가능할 것으로 판단되며, 재해통계관련 법 제도 개선에 활용 될 것으로 기대된다.

Keywords

SHGSCZ_2019_v20n4_69_f0001.png 이미지

Fig. 1. Cluster map by sea area

SHGSCZ_2019_v20n4_69_f0002.png 이미지

Fig. 2. Research flow chart

Table 1. Yearly damage history

SHGSCZ_2019_v20n4_69_t0001.png 이미지

Table 2. Price value conversion

SHGSCZ_2019_v20n4_69_t0002.png 이미지

Table 3. Resources of Prediction Function of Wind Damage

SHGSCZ_2019_v20n4_69_t0003.png 이미지

Table 4. Calculation of regression coefficient and prediction power

SHGSCZ_2019_v20n4_69_t0004.png 이미지

Table 5. Accuracy comparison of damage prediction function

SHGSCZ_2019_v20n4_69_t0005.png 이미지

References

  1. R. H. Platt, "Disaster and Democracy", Washington Island Press, 1999.
  2. D. K. Park, "The Emergency Management System in the U. S. -The Lessons from the Hurricane Sandy", The Korean Society of Private Security, Vol.12, No.1, pp.77, 2013.
  3. D. H. Ko, "Hurricane Katrina as Unnatural Disaster : Government Failure and Inequality of Risk", Korea Social Policy Review, Vol.22, No.1, pp.84, 2015. DOI: https://doi.org/10.17000/kspr.22.1.201503.83
  4. F. Townsend, "The federal response to Hurricane Katrina: Lessons learned", Washington DC : The White House, 2006.
  5. S. W. Kang, K. C. Jun, S. I. Kim, & K. S. Park, "Storm surge prediction in Masan Bay using fine-scaled surge model for typhoon 'MAEMI'", Korean Meteorological Society Spring Conference, pp.178-179, 2004.
  6. H. W. Lee, & J. H. Lee, "Heavy Seas Forecast using Convolutional Neural Network", Korean Institute of Intelligent Systems Fall Conference, Vol.24, No.2, pp.77-78, 2014.
  7. S. S. Lee , C. H. Won, & Y. M. Kim, "Numerical Prediction of Typhoon Storm Surge using Ocean-Meteorology Coupled Model", Journal of the Wind Engineering Institute of Korea, Vol. 18, No.4, pp. 207-214, 2014.
  8. Korea Adaptation Center for Climate Change(KACCC), "Local government vulnerability evaluation support report", 2013.
  9. WAMDI Group. The WAM model - A Third Generation Ocean Wave Prediction Model. J. Phys. Oceanogr, 18, pp1775-1810. 1988. DOI: https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2
  10. T. Soomere, "Wind Wave Statistics in Tallinn Bay" Boreal Env. Res, Vol.10, No.2, pp.103-118, 2005.
  11. F. Ardhuin, S. T. Gille, D. Menemenlis, C. B. Rocha, N. Rascle, B. Chapron, & J. Molemaker, "Small-scale Open Ocean Currents have Large Effects on Wind Wave Heights" Journal of Geophysical Research Oceans, Vol.122, No.6, pp.4500-4517, 2017. DOI : https://doi.org/10.1002/2016JC012413