DOI QR코드

DOI QR Code

Calibration of Car-Following Models Using a Dual Genetic Algorithm with Central Composite Design

중심합성계획법 기반 이중유전자알고리즘을 활용한 차량추종모형 정산방법론 개발

  • Bae, Bumjoon (Center for Private Financing Highway, The Korea Transport Insititute) ;
  • Lim, Hyeonsup (Center for Transportation Analysis, Oak Ridge National Laboratory) ;
  • So, Jaehyun (Jason) (Division for Smart City and Transportept, The Korea Transport Insititute)
  • 배범준 (한국교통연구원 민자도로관리연구센터) ;
  • 임현섭 ;
  • 소재현 (한국교통연구원 스마트시티교통연구팀)
  • Received : 2019.03.04
  • Accepted : 2019.03.25
  • Published : 2019.04.30

Abstract

The calibration of microscopic traffic simulation models has received much attention in the simulation field. Although no standard has been established for it, a genetic algorithm (GA) has been widely employed in recent literature because of its high efficiency to find solutions in such optimization problems. However, the performance still falls short in simulation analyses to support fast decision making. This paper proposes a new calibration procedure using a dual GA and central composite design (CCD) in order to improve the efficiency. The calibration exercise goes through three major sequential steps: (1) experimental design using CCD for a quadratic response surface model (RSM) estimation, (2) 1st GA procedure using the RSM with CCD to find a near-optimal initial population for a next step, and (3) 2nd GA procedure to find a final solution. The proposed method was applied in calibrating the Gipps car-following model with respect to maximizing the likelihood of a spacing distribution between a lead and following vehicle. In order to evaluate the performance of the proposed method, a conventional calibration approach using a single GA was compared under both simulated and real vehicle trajectory data. It was found that the proposed approach enhances the optimization speed by starting to search from an initial population that is closer to the optimum than that of the other approach. This result implies the proposed approach has benefits for a large-scale traffic network simulation analysis. This method can be extended to other optimization tasks using GA in transportation studies.

미시적 교통류 모형의 정산은 시뮬레이션 분석에 있어 매우 중요한 요소이다. 유전자 알고리즘은 교통류 모형의 정산에 널리 활용되어 왔으며, 일반적으로 이러한 최적화 문제에 있어 높은 효율성을 보이는 것으로 알려져 있다. 하지만 제한된 시간내에 신속한 의사결정을 위한 시뮬레이션 분석에 있어 유전자알고리즘의 모형 정산속도는 여전히 느리다. 이에 본 연구에서는 정산 효율 향상을 위해 중심합성계획법 기반의 이중유전자알고리즘을 활용한 차량추종모형 정산방법론을 개발하였다. 개발된 정산 방법론에서는 실험계획법 중 하나인 중심합성계획법과 유전자알고리즘을 결합하여 준최적해를 찾고, 이를 다시 유전자알고리즘의 초기 값으로 하여 모형 파라미터의 최적해를 찾는다. 개발된 방법을 활용하여 Gipps의 차량추종모형을 정산하였다. 선행연구에서 사용된 단일 유전자알고리즘을 활용한 방법과 비교한 결과, 본 연구에서 개발한 방법이 더 짧은 시간내에 최적해를 찾는 것으로 확인되었다. 개발된 방법론은 유전자알고리즘을 사용하는 다양한 교통분석에 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Box G. E. P. and Wilson K. B.(1951), "On the experimental attainment of optimum conditions," Journal of the Royal Statistical Society, Series B (Methodological), vol. 13, no. 1, pp.1-45. https://doi.org/10.1111/j.2517-6161.1951.tb00067.x
  2. Cheu R. L., et al.(1998), "Calibration of FRESIM for Singapore Expressway Using Genetic Algorithm," Journal of Transportation Engineering, vol. 124, no. 6, pp.526-535. https://doi.org/10.1061/(ASCE)0733-947X(1998)124:6(526)
  3. Cunto F. and Saccomanno F. F.(2008), "Calibration and validation of simulated vehicle safety performance at signalized intersections," Accident Analysis & Prevention, vol. 40, no. 3, pp.1171-1179. https://doi.org/10.1016/j.aap.2008.01.003
  4. Eriksson A.(1999), "Calibration of a traffic simulation model by using factorial experiments and response surfaces," LiTH-MAT-Ex-2000-14.
  5. FHWA(2016), Next Generation Simulation (NGSIM) US Route 101 Dataset, FHWA, Editor, U.S. Department of Transportation Intelligent Transportation Systems Joint Program Office (JPO): Washington, D.C.
  6. Gipps P. G.(1981), "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, vol. 15, no. 2, pp.105-111. https://doi.org/10.1016/0191-2615(81)90037-0
  7. Howe A. and Bozdogan H.(2010), "Predictive Subset VAR Modeling Using the Genetic Algorithm and Information Complexity," European Journal of Pure and Applied Mathematics, vol. 3, no. 3, pp.382-405.
  8. Kesting A. and Treiber M.(2008), "Calibrating car-following models by using trajectory data: Methodological study," Transportation Research Record: Journal of the Transportation Research Board, vol. 2088, pp.148-156. https://doi.org/10.3141/2088-16
  9. Kim S. J., Kim W. and Rilett L.(2005), "Calibration of microsimulation models using nonparametric statistical techniques," Transportation Research Record: Journal of the Transportation Research Board, vol. 1935, no. 1, pp.111-119. https://doi.org/10.1177/0361198105193500113
  10. Mee R. W.(2009), A Comprehensive Guide to Factorial Two-Level Experimentaion, Springer Science & Business Media.
  11. Park B. B. and Qi H. M.(2005), "Development and Evaluation of a Procedure for the Calibration of Simulation Models," Transportation Research Record: Journal of the Transportation Research Board, vol. 1934, pp.208-217. https://doi.org/10.1177/0361198105193400122
  12. Park B. B., Won J. and Yun I.(2006), "Application of Microscopic Simulation Model Calibration and Validation Procedure," Transportation Research Record: Journal of the Transportation Research Board, vol. 1978, pp.113-122. https://doi.org/10.1177/0361198106197800115
  13. Treiber M. and Kesting A.(2013), "Microscopic Calibration and Validation of Car-Following Models - A Systematic Approach," Procedia-Social and Behavioral Sciences, vol. 80, pp.922-939. https://doi.org/10.1016/j.sbspro.2013.05.050
  14. Van Hinsbergen C., et al.(2009), "Bayesian calibration of car-following models," IFAC Proceedings Volumes, vol. 42, no. 15, pp.91-97.
  15. Vasconcelos L., et al.(2014), "Calibration of the Gipps Car-following Model Using Trajectory Data," Transportation Research Procedia, vol. 3, pp.952-961. https://doi.org/10.1016/j.trpro.2014.10.075