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요  약

미시적 교통류 모형의 정산은 시뮬레이션 분석에 있어 매우 중요한 요소이다.  유전자 알고
리즘은 교통류 모형의 정산에 널리 활용되어 왔으며, 일반적으로 이러한 최적화 문제에 있어 
높은 효율성을 보이는 것으로 알려져 있다. 하지만 제한된 시간내에 신속한 의사결정을 위한 
시뮬레이션 분석에 있어 유전자알고리즘의 모형 정산속도는 여전히 느리다. 이에 본 연구에서
는 정산 효율 향상을 위해 중심합성계획법 기반의 이중유전자알고리즘을 활용한 차량추종모
형 정산방법론을 개발하였다. 개발된 정산 방법론에서는 실험계획법 중 하나인 중심합성계획
법과 유전자알고리즘을 결합하여 준최적해를 찾고, 이를 다시 유전자알고리즘의 초기 값으로 
하여 모형 파라미터의 최적해를 찾는다. 개발된 방법을 활용하여 Gipps의 차량추종모형을 정
산하였다. 선행연구에서 사용된 단일 유전자알고리즘을 활용한 방법과 비교한 결과, 본 연구에
서 개발한 방법이 더 짧은 시간내에 최적해를 찾는 것으로 확인되었다. 개발된 방법론은 유전
자알고리즘을 사용하는 다양한 교통분석에 활용될 수 있을 것으로 기대된다.
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ABSTRACT

The calibration of microscopic traffic simulation models has received much attention in the 

simulation field. Although no standard has been established for it, a genetic algorithm (GA) has been 

widely employed in recent literature because of its high efficiency to find solutions in such 

optimization problems. However, the performance still falls short in simulation analyses to support 

fast decision making. This paper proposes a new calibration procedure using a dual GA and central 

composite design (CCD) in order to improve the efficiency. The calibration exercise goes through 

three major sequential steps: (1) experimental design using CCD for a quadratic response surface 

model (RSM) estimation, (2) 1st GA procedure using the RSM with CCD to find a near-optimal 

initial population for a next step, and (3) 2nd GA procedure to find a final solution. The proposed 

method was applied in calibrating the Gipps car-following model with respect to maximizing the 
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Ⅰ. Introduction

Traffic analyses, such as traffic signal optimization and predicting network-wise travel time, cannot be solved by 

using simple regression models. In addition, field experiments and implementations are often very limited due to 

safety issues and tremendous costs. Microscopic traffic simulation has been used to describe traffic flow 

characteristics and solve those issues based on pre-defined driving behavior models embedded in such tools (e.g. a 

car-following, lane-changing, gap-acceptance models, and so on). They can represent realistic traffic situations 

including normal and abnormal traffic conditions if their parameters are properly calibrated. Hence, calibration of 

the models is a key procedure to obtain realistic and reliable results from a microscopic traffic simulation analysis. 

A variety of calibration approaches have developed using parametric/nonparametric statistical models or machine 

learning algorithms(Kim et al., 2005; Eriksson, 1999; Kesting and Treiber, 2008; Van Hinsbergen, et al., 2009; 

Vasconselos, 2014; Treiber and Kesting, 2013; Park and Qi, 2005; Park et al., 2006; Cunto and Saccomanno, 2008) 

while there has been no standard. A genetic algorithm (GA) is a search algorithm that emulates biological 

evolutionary theories. A GA searches solutions at multiple locations in a parameter space based on three 

probabilistic rules including selection, crossover, and mutation over generations (or iterations). Thus, the main 

advantage of GA is that it has a low likelihood of getting stuck in local optima while providing high computational 

efficiency(Kim et al., 2005; Howe and Bozdogan, 2010). This tool has become useful for finding near-optimal 

values of parameters embedded in a traffic simulation model(Kesting and Treiber, 2008; Vasconselos, 2014; Treiber 

and Kesting, 2013; Park and Qi, 2005; Park et al., 2006; Cunto and Saccomanno, 2008; Cheu et al., 1998). 

Although a GA has provided reliable solutions for calibration, improvement of its computational efficiency in traffic 

simulation study has less been paid attention. Traffic simulation studies generally require to calibrate a large 

number of model parameters and each simulation run takes longer computation time than deriving an analytic 

solution. That is, a large number of parameters with each parameter having multi-level values leads an excessive 

amount of calibration time (e.g., 5 parameters with 5 values per each makes 3,125 (=55) possible combinations). 

This paper proposes a hybrid calibration procedure in which response surface methodology (RSM) with central 

composite design (CCD) is employed with GA to improve efficiency of the calibration process. Using 

field-collected vehicle trajectory data, the procedure is applied to calibrate the parameters of Gipps car-following 

model in order to fit spacing distribution between lead and following vehicles.

likelihood of a spacing distribution between a lead and following vehicle. In order to evaluate the 

performance of the proposed method, a conventional calibration approach using a single GA was 

compared under both simulated and real vehicle trajectory data. It was found that the proposed 

approach enhances the optimization speed by starting to search from an initial population that is 

closer to the optimum than that of the other approach. This result implies the proposed approach has 

benefits for a large-scale traffic network simulation analysis. This method can be extended to other 

optimization tasks using GA in transportation studies.

Key words : Simulation calibration, Optimization, Central composite design, Genetic algorithm, 

Gipps car-following model
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Ⅱ. Background on Methodology

1. Gipps Car-Following Model

Car-following models are one the most important models embedded in microscopic simulation tools. Most of 

them can be classified in a collision avoidance class aiming to specify a safe following distance behind the lead 

vehicle. Gipps car-following model is one of the most commonly used models in the class and mostly known for 

being a key factor of the Aimsun microscopic simulation tool. It consists of two components(Gipps, 1981): 

acceleration and deceleration models, corresponding to the empirical formulations defined by equations (1) and (2). 

These models calculate the speed of each vehicle at a given time t on the basis of its speed at the previous time 

step.


   




 √


  (1)


 τ τ  √ τ 

         τ    
  ′  (2)

where, τ : driver’s reaction time

 : follower and leader, respectively

 : space traveled by vehicle

 : vehicle’s speed at time 


 

: follower’s desired speed and maximum acceleration, respectively

  
′ : most severe braking that follower wishes to undertake and his estimate of 

leader’s most severe braking capability

   : leader’s effective length, which is the leading vehicle length plus the follower’s 

desired inter-vehicle spacing at a stop

The speed of vehicle n at time t + τ is given by the minimum of Equation (1) and (2)


 τ  min 〖

 τ〗
 τ (3)

Then, the position of the vehicle n inside the current lane is updated taking this speed into the movement 

equation


 τ  


 ττ (4)

Gipps model includes five parameters in order to compute acceleration and deceleration of a following vehicle. 

<Table 1> shows the model parameters to be calibrated.
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Parameters Description


  (X1*) Desired speed (m/s)

  (X2) Maximum acceleration (m/s2)

  (X3) Most severe braking that the follower wishes to undertake (m/s2)

  
′  (X4) Follower’s estimate of the leader’s most severe braking capability (m/s2)

    (X5) The leader’s real length + the follower’s desired inter-vehicle spacing (m)

* X1 – X5 are the parameter names to be used in the case study of this study.

<Table 1> Parameters of Gipps Car-Following Model

2. Kernel Density Estimation and Genetic Algorithm for Model Calibration

A kernel density estimation (KDE) is a nonparametric method to estimate the probability density of a traffic 

flow variable, such as density and speed, without assuming a certain distribution of the data. This KDE is used to 

calculate probability densities of data points obtained by the simulation in this study. 

Since the task of simulation in this study assumes that no disaggregated level attribute is available, the 

simulation model should be calibrated in a way to represent similar distribution of the aggregated attributes that can 

be observed in collected data. In this sense, the objective of this optimization task is to maximize the likelihood of 

having simulation results same as values in observed data. For each time point, a probability density of having a 

predicted value from the simulation using the KDE from the observations can be calculated. Then, the likelihood 

here is defined as the joint probability that the all predicted data points of the attributes  given a certain parameter 

estimates vector given by Equation (5).

   
  ⋯

  (5)

Then, log transformation is used to make the calculation easier shown by Equation (6).

 log  log


  
⋯log


 

 (6)

A genetic algorithm (GA) is a heuristic searching technique for both constrained and unconstrained optimization 

problems. It generates solutions by mimicking the natural selection process. This algorithm continuously evolves a 

population of candidate solutions toward an optimum over generations by three main methods: selection, crossover, 

and mutation. In each generation a new solution is generated from its “parents” in a previous generation. The GA 

has been used widely in calibration of simulation models, to solve the problem using an automated procedure. In this 

study, a GA solver of the optimization toolbox in Matlab was used to find the best solution for the Gipps model.

3. Response Surface Methodology with Central Composite Design

In general a first-order model from a full- or fractional-factorial design is less useful for searching an optimum 

since it can only identify linear relationships between explanatory variables and a response variable. Box and 
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Wilson(1951) devised the response surface methodology (RSM) using a second-order model to investigate or 

optimize processes sequentially. The second-order model, expressed by Equation (7), contains linear interactions of 

two-factors and pure quadratic terms, as well as an intercept and linear main effect terms in a first-order model.

  
∑  

 
∑  

 ⋅
 ∑  

 ⋅
ϵ (7)

A central composite design (CCD) is the most frequently utilized second-order design for RSM. This design 

consists of three types of experimental runs: a two-factor factorial design, center points and axial points. A 

fractional factorial is generally used in CCD for five or more factors(Mee, 2009). From the center point runs, the 

pure quadratic effect can be captured.

Ⅲ. Proposed calibration procedure

The overall procedure of the proposed calibration framework is shown in <Fig. 1>. The major characteristics of 

this approach is to use CCD for estimating a quadratic response model and to employ dual GA on the basis of the 

response modeling result.

<Fig. 1> Overview of proposed calibration procedure

1. Central Composite Design for Response Surface Model Estimation

First of all, CCD was used to build a second-order model for the response variable. The 5 parameters ( , , , 

′, ) were considered as factors in <Table 1>, and half fraction of full-factorial was used. This 5-factor CCD is 

a 36-run design, including 16 of fractional factorial, 10 axial points, and 10 center points. <Table 2> shows both 
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coded and natural units of the design. The ranges of each factor in the design was selected on the basis of authors’ 

experience with the car-following model. These values define the initial searching space for the proposed calibration 

framework. For each experiment run, the Gipps car-following model returns the negative sum of log-likelihood for 

spacing distribution and it is presented in the column Y as a response variable in <Table 2>.

Coded Unit Natural Unit

Run X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 Y

1 -1 -1 -1 -1 1 15.0 0.8 2.0 2.0 12.0 5,111.5

2 -1 -1 -1 1 -1 15.0 0.8 2.0 3.0 8.0 5,215.7

3 -1 -1 1 -1 -1 15.0 0.8 3.0 2.0 8.0 5,087.8

4 -1 -1 1 1 1 15.0 0.8 3.0 3.0 12.0 5,285.5

5 -1 1 -1 -1 -1 15.0 1.2 2.0 2.0 8.0 4,987.3

6 -1 1 -1 1 1 15.0 1.2 2.0 3.0 12.0 5,158.6

7 -1 1 1 -1 1 15.0 1.2 3.0 2.0 12.0 5,028.0

8 -1 1 1 1 -1 15.0 1.2 3.0 3.0 8.0 5,155.9

9 1 -1 -1 -1 -1 25.0 0.8 2.0 2.0 8.0 3,528.6

10 1 -1 -1 1 1 25.0 0.8 2.0 3.0 12.0 3,449.9

11 1 -1 1 -1 1 25.0 0.8 3.0 2.0 12.0 3,338.0

12 1 -1 1 1 -1 25.0 0.8 3.0 3.0 8.0 3,473.8

13 1 1 -1 -1 1 25.0 1.2 2.0 2.0 12.0 3,404.3

14 1 1 -1 1 -1 25.0 1.2 2.0 3.0 8.0 3,365.1

15 1 1 1 -1 -1 25.0 1.2 3.0 2.0 8.0 3,367.9

16 1 1 1 1 1 25.0 1.2 3.0 3.0 12.0 3,514.3

17 -2 0 0 0 0 10.0 1.0 2.5 2.5 10.0 6,016.7

18 2 0 0 0 0 30.0 1.0 2.5 2.5 10.0 3,302.9

19 0 -2 0 0 0 20.0 0.6 2.5 2.5 10.0 3,304.3

20 0 2 0 0 0 20.0 1.4 2.5 2.5 10.0 3,290.6

21 0 0 -2 0 0 20.0 1.0 1.5 2.5 10.0 3,289.1

22 0 0 2 0 0 20.0 1.0 3.5 2.5 10.0 3,339.7

23 0 0 0 -2 0 20.0 1.0 2.5 1.5 10.0 3,613.0

24 0 0 0 2 0 20.0 1.0 2.5 3.5 10.0 3,455.0

25 0 0 0 0 -2 20.0 1.0 2.5 2.5 6.0 3,263.2

26 0 0 0 0 2 20.0 1.0 2.5 2.5 14.0 3,282.2

27 0 0 0 0 0 20.0 1.0 2.5 2.5 10.0 3,244.3

28 0 0 0 0 0 20.0 1.0 2.5 2.5 10.0 3,238.1

29 0 0 0 0 0 20.0 1.0 2.5 2.5 10.0 3,231.9

30 0 0 0 0 0 20.0 1.0 2.5 2.5 10.0 3,225.8

31 0 0 0 0 0 20.0 1.0 2.5 2.5 10.0 3,219.8

32 0 0 0 0 0 20.0 1.0 2.5 2.5 10.0 3,213.8

33 0 0 0 0 0 20.0 1.0 2.5 2.5 10.0 3,207.9

34 0 0 0 0 0 20.0 1.0 2.5 2.5 10.0 3,202.0

35 0 0 0 0 0 20.0 1.0 2.5 2.5 10.0 3,196.2

36 0 0 0 0 0 20.0 1.0 2.5 2.5 10.0 3,190.4

<Table 2> Central Composite Design
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The estimation result of a quadratic model is shown in <Table 3>. Although there are many statistically 

insignificant estimates, all these were remained for the following two main reasons. First, the 5 factors must be 

included in the model because those are to be calibrated in the Gipps car-following model. Second, the objective of 

this calibration framework is to estimate the response variable as much as possible, so simplifying the model will 

not benefit in that sense.

Term Estimate Std Error t Ratio Prob>|t|

Intercept 6,283.95 729.49 8.61 <.0001

X1* -158.46 13.41 -11.82 <.0001

X2 -111.81 335.30 -0.33 0.743

X3 10.95 134.12 0.08 0.936

X4 37.46 134.12 0.28 0.784

X5 3.05 33.53 0.09 0.929

(X1-20)*(X1-20) 18.19 2.32 7.83 <.0001

(X1-20)*(X2-1) 14.50 82.13 0.18 0.862

(X2-1)*(X2-1) 2,853.49 1,451.91 1.97 0.068

(X1-20)*(X3-2.5) -3.45 32.85 -0.11 0.918

(X2-1)*(X3-2.5) 169.66 821.32 0.21 0.839

(X3-2.5)*(X3-2.5) 473.49 232.30 2.04 0.060

(X1-20)*(X4-2.5) -10.92 32.85 -0.33 0.744

(X2-1)*(X4-2.5) 29.66 821.32 0.04 0.972

(X3-2.5)*(X4-2.5) 112.58 328.53 0.34 0.737

(X4-2.5)*(X4-2.5) 693.11 232.30 2.98 0.009

(X1-20)*(X5-10) -1.04 8.21 -0.13 0.901

(X2-1)*(X5-10) 54.68 205.33 0.27 0.794

(X3-2.5)*(X5-10) 3.31 82.13 0.04 0.968

(X4-2.5)*(X5-10) 17.96 82.13 0.22 0.830

(X5-10)*(X5-10) 26.99 14.52 1.86 0.083

* Variable description is shown in <Table 1>.

<Table 3> Estimation Result of Quadratic Regression Model 

In the canonical curvature of RSM, if all of the eigenvalues were positive, the global minimum can be found by 

using the unique stationary point of the fitted surface. In this case, the global minimum was found as 2808.9 at 

X1=24.36, X2=1.01, X3=2.50, X4=2.51, and X5=10.02. However, instead of using this unique stationary point to 

find the optimum, GA was used to generate a population near the optimum, since the fitted surface is unbounded 

when there are both positive and negative eigenvalues. 

2. 1st Genetic Algorithm

Once the fitted second-order model for the negative sum of log-likelihood is estimated, this regression model is 
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plugged into GA as a fitness function. The basic idea of running GA with the regression model is to find a near 

optimum and start 2nd GA with relatively good initial population (i.e., good parents). Thus, the better fitted 

regression model will bring the initial population closer to optimal parameter sets and improve the fitness value at 

start of 2nd GA. 

3. 2nd Genetic Algorithm

The major difference of 2nd GA is the initial population. The initial population is used to seed in the GA. 

Traditionally, the initial populations are generated using pseudo random numbers, but in this proposed framework, 

the 2nd GA uses the final population of 1st GA as its initial population. The advantage of this approach is that we 

can start GA from near optimum sets or relatively better populations, compared to starting from the pseudo random 

numbers. 

As a number of options in Matlab’s GA tool affect resultant solutions, the most of them were remained as 

default set-up with a few changes (e.g. population size = 20, maximum number of iterations = 2,000) to 

consistently compare the results between the conventional GA and the proposed approach.

4. Simulation Set-up

The following is a pseudo code of the proposed framework, and it was run by Matlab scripts. Note that the 

conventional GA for model calibration skips the code line number 7-12 and uses initial population generated from 

pseudo random numbers.

A Dual Genetic Algorithm using Central Composite Design

1  : CCD_X = 36-run Combinations of 5 parameters using Central Composite Design (36-by-5 matrix)

2  : Y = Response variable (the negative sum of log-likelihood)

3  : ModelGipps = Gipps Car-following Model (input=5 parameters, output= the negative sum of log-likelihood)

4  : X1 = The local minimum from 1st genetic algorithm model

5  : P1 = The final population from 1st genetic algorithm model

6  : X2 = The local minimum from 2nd genetic algorithm model

7  : P2 = The final population from 2nd genetic algorithm model

8  : CCD_X ← Construct CCD and convert to natural unit

9  : for i = 1 to size(CCD_X)

10 : Yi = ModelGipps (x = CCD_Xi)

11 : end for

12 : Model1 = Fit a (second order) quadratic regression model (x=CCD_X, y=Y)

13 : [X1, P1]= Model1;    _

[X2, P2]= ModelGipps;   P1]

Ⅳ. Case Scenarios

The main contribution of the proposed calibration approach is to increase the efficiency of a calibration process. 

Therefore, the performance of the proposed approach, named CCD-GA, was compared with that of the conventional 
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GA approach in this study.

In order to calibrate a car-following model, ground truth data are required for validation of parameter estimates. 

Two case scenarios were established with different ground truth data: simulated trajectory using the Gipps model 

and sampled trajectories from the Next Generation Simulation (NGSIM) datasets. In the first scenario the purpose 

of using simulated data as ground truth is to avoid the accuracy issue of the selected car-following model. Hence 

the characteristics of the proposed calibration approach can be explored more clearly. In contrast, using real data, 

NGSIM, can give more realistic verification results for the proposed approach.

1. Scenario 1 Using Simulated Vehicle Trajectory

Data Collection for the Lead Vehicle

In order to generate the following vehicle’s behavior using the car-following model, the lead vehicle’s driving 

trajectory data is required. To get the real vehicle trajectory data, the latitude/longitude data and the corresponding 

speed of a vehicle were collected every second using a GPS data logger while driving. The data collection was 

carried out during off-peak hours of a weekday on an arterial in an urban area. Therefore, it includes 

comprehensive driving behaviors in terms of speed and acceleration. The 300-second data was selected to be used 

as the lead vehicle’s driving behavior, in which stop-and-go, acceleration and deceleration characteristics with 

varying magnitude are included.

Data Generation for the Following Vehicle

With respect to the lead vehicle’s data, the following vehicle’s driving attributes were generated using the Gipps 

car-following model with the parameter values from Vasconcelos et al.(2014) (see Table 4). It was assumed that 

those parameter values are correct for this study. Since the purpose of this study is to propose a new approach for 

model calibration and verify its characteristics, this assumption allows to avoid judging the accuracy of the Gipps 

car-following model.

Parameters 
 (m/s)  (m/s2)  (m/s2)   

′ (m/s2)   (m) τ(sec)

Values* 26.00 0.82 2.53 2.78 5.20 0.40

* Parameter values were imported from Vasconcelos et al.(2014).

<Table 4> Assumed Parameter Values for Following Vehicle in Scenario 1

The time-space diagram of the two vehicles is shown in <Fig. 2>. The spacing between two vehicles, i.e., the 

distance between two front bumpers of successive vehicles, for every second is measured so that the kernel density 

distribution was estimated as in <Fig. 2>. Finally, the negative log sum of the distribution was calculated, which 

was used in the GA in order to compare it with optimized statistics during the iterations. 
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<Fig. 2> Trajectory and spacing distribution of ground truth data in Scenario 1

2. Scenario 2 Using Real Vehicle Trajectory

NGSIM US-101 Datasets

The United States Department of Transportation (US DOT) Federal Highway Administration (FHWA) launched 

the NGSIM program in 2005 to develop microscopic traffic behaviour models. As a part of this program, the US 

101 trajectory dataset(FHWA,2016) was collected on southbound US 101, the Hollywood Freeway in California. 

Every individual vehicle’s trajectory data were collected on the 640-meter (2,100-feet) length of study area during 

the morning peak hours. 

The trajectories of two successive vehicles on the left-most lane were sampled because they shows deceleration 

and acceleration patterns repetitively. <Fig. 3> illustrates the time-space diagram and the kernel density distribution 

for the spacing between two vehicles.

<Fig. 3> Trajectory and spacing distribution of ground gruth data in Scenario 2
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Ⅴ. Analysis Results

1. Minimization of the Negative Log-Sum in GA

Total 2,000 generations were searched successively in the GA procedure to find the optimal set of parameter 

estimates. Although the negative log sums do not seem to converge after the 2,000 generations, the difference 

between two approaches can be observed from the beginning of iterations. <Fig. 4(a)> and <Fig. 4(b)> display the 

optimization performance of both approaches for Scenario 1 and 2, respectively. The traditional method, to apply a 

single GA, starts above 3,000 of the log sum for both scenarios. However, the proposed approach, to use double 

GA with CCD, does at around 2,500, which is the value that the single GA approach can reaches after the first 

three iterations. This is the strong evidence that the CCD-GA method starts to search from the area which is closer 

to the optimum than the single GA does. It implies that the CCD-GA can reduce a number of iterations from the 

beginning of the calibration process compared with the traditional method.

(a) Scenario 1

(b) Scenario 2

<Fig. 4> Optimization performance over iteration: (a) Scenario 1 and (b) Scenario 2
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2. Comparison of the Follower’s Driving Behaviors

<Table 5> shows the optimal parameter values from the CCD-GA approach for the Gipps model with respect to 

the ground truth data. Although the negative log-sum of both approaches seemed to converge after the 2,000 

iterations, their solutions varied within the searching space, particularly for the maximum acceleration( ), the 

follower’s estimate of the lead vehicle’s maximum deceleration rate(  
′ ) and the effective length(  ). If there 

was strong evidence that the solution should not be accepted, then one can go back to the experimental design step 

and modify the parameter ranges.

Parameters 
 (m/s)  (m/s2)  (m/s2)   

′ (m/s2)   (m)

Scenario 1
GA 55.94 1.92 2.81 1.26 48.24

CCD-GA 60.00 5.00 0.01 2.50 23.40

Scenario 2
GA 58.21 4.19 6.99 0.86 15.49

CCD-GA 55.34 4.33 0.50 1.01 16.00

<Table 5> Optimal Parameters

Interestingly, two reproduced trajectories of the following vehicle in Scenario 1 were almost overlapped with the 

ground truth data in the time-space diagram in <Fig. 5>, despite of the variance of parameter values between two 

methods. One potential cause of this result is the fact that the lead vehicle’s driving trajectory is too smooth except 

the complete stop between around 20 and 35 second, so that there are less variations in the follower’s reaction. On 

the other hand, the solution parameters of CCD-GA approach reproduced a more accurate pattern for the lead 

vehicle’s stop than those of GA. As a result, this made the kernel density distribution of the proposed method more 

similar to the ground truth than that of GA.

<Fig. 5> Comparison of the trajectories and kernel density distribution for Scenario 1

The reproduced trajectories for Scenario 2 are shown in <Fig. 6>. Both calibration approaches generated the 

overlapped trajectories each other despite of the different optimization performance at the beginning of the 
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iterations, shown in <Fig. 4(b)>. However, those trajectories were not overlapped with the ground truth. This result 

stems from that the Gipps model tends to fall short of flexibility and sensitivity to reproduce an irregular spacing 

pattern in such repetitive accelerating and decelerating traffic flow condition in <Fig. 6>.

<Fig. 6> Comparison of the trajectories and kernel density distribution for Scenario 2

Ⅵ. Conclusions and Discussions

Calibration of a car-following model is an essential part of microscopic traffic simulation analyses. And GA has 

been frequently used for it. Despite the high performance of GA, it starts with the initial population that is 

assigned as random. 

In this study, the dual GA combined with CCD has been proposed in order to improve the efficiency of the 

calibration process. Using the CCD, GA can start to search from the area that is closer to the optimum so that it 

can skip initial iterations of a simulation run. The higher efficiency of the proposed method was identified by 

comparing with the single GA approach which is the convention in traffic simulation area with the simulated and 

real vehicle trajectory data.

The proposed approach has benefits for the following cases. First, when a single simulation run takes a very 

long time (e.g. for a physically large-scale network analysis), reducing the number of simulation runs gives higher 

efficiency. Second, when one needs to find the near-optimum within a relatively short operational time to support 

fast decision making, this framework can reach the goal more quickly than the conventional approach does. This 

can be a case of real-time traffic analyses. 

Many other options in the proposed method should be investigated for future studies in order to enhance the 

improvement in this paper. Running GA twice in the proposed algorithm brings additional complexity in 

computation, compared to running a single GA. Although the impact was not significant in the case study, 

improvement in the first GA may be necessary for a simulation analysis in real-time traffic operations. Adding 

more experiment runs in CCD or using a full factorial CCD may be able to estimate better population potentially. 

Changing GA parameters is another possibility. This includes to change searching boundary dynamically over 



Calibration of Car-Following Models Using a Dual Genetic Algorithm with Central Composite Design

42   한국ITS학회논문지 제18권, 제2호(2019년 4월)

generations, to use different selection methods, and so on. Applying more complex car-following models may show 

more evident improvement compared with the conventional GA approach. Lastly, another optimization method as a 

substitution of the second GA should be tested and compared with the proposed method. Neural-network-based 

models are known to perform well to find a solution in nonlinear optimization problems.
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