DOI QR코드

DOI QR Code

FERPM을 적용한 저등급 고체연료의 기공발달 모델 특성 연구

Study of Pore Development Model in Low Rank Solid Fuel Using FERPM

  • PARK, KYUNG-WON (School of Mechanical Engineering, Pusan National University) ;
  • KIM, GYEONG-MIN (School of Mechanical Engineering, Pusan National University) ;
  • JEON, CHUNG-HWAN (School of Mechanical Engineering, Pusan National University)
  • 투고 : 2018.11.30
  • 심사 : 2019.04.30
  • 발행 : 2019.04.30

초록

Due to the increasing demand of high rank coal, the use of low rank coal, which has economically advantage, is rising in various industries using carbonaceous solid fuels. In addition, the severe disaster of global warming caused by greenhouse gas emissions is becoming more serious. The Republic of Korea set a goal to reduce greenhouse gas emissions by supporting the use of biomass from the Paris International Climate Change Conference and the 8th Basic Plan for Electricity Supply and Demand. In line with these worldwide trends, this paper focuses on investigating the combustibility of high rank coal Carboone, low rank coal Adaro from Indonesia, Baganuur from Mongolia and, In biomass, wood pellet and herbaceous type Kenaf were simulated as kinetic reactivity model. The accuracy of the pore development model were compared with experimental result and analyzed using carbon conversion and tau with grain model, random pore model, and flexibility-enhanced random pore model. In row lank coal and biomass, FERPM is well-matched kinetic model than GM and RPM to using numerical simulations.

키워드

SSONB2_2019_v30n2_178_f0001.png 이미지

Fig. 1. Pore development models comparison between (a) reaction rate over Carbon conversion (b) reaction rate over Tau of Carboone

SSONB2_2019_v30n2_178_f0006.png 이미지

Fig. 6. Correlation factor in pore development model of sample

SSONB2_2019_v30n2_178_f0007.png 이미지

Fig. 2. Pore development models comparison between (a) reaction rate over Carbon conversion (b) reaction rate over Tau of adaro

SSONB2_2019_v30n2_178_f0008.png 이미지

Fig. 3. Pore development models comparison between (a) reaction rate over Carbon conversion (b) reaction rate over Tau of baganuur

SSONB2_2019_v30n2_178_f0009.png 이미지

Fig. 4. Pore development models comparison between (a) reaction rate over Carbon conversion (b) reaction rate over Tau of WP

Table 1. Basic properties of low rank coal and biomass

SSONB2_2019_v30n2_178_t0001.png 이미지

Table 2. Structural parameter and a, b, c of pore development models

SSONB2_2019_v30n2_178_t0002.png 이미지

Table 3. t0.5 values of experimental samples

SSONB2_2019_v30n2_178_t0003.png 이미지

Fig. 5. Pore development models comparison between (a) reaction rate over Carbon conversion (b) reaction rate over Tau of Kenaf

SSONB2_2019_v30n2_178_t0004.png 이미지

참고문헌

  1. G. M. Kim, J. H. Kim, K. Y. Lisandy, G. B. Kim, and C. H. Jeon, "Reaction Rate Analysis of Combustion for Indonesian Ash-free Coal Char at High Temperature", Journal of Energy Engineering, Vol. 24, 2015, pp. 232-239, doi: http://dx.doi.org/10.5855/ENERGY.2015.24.4.232.
  2. Korean Administration, "8th Basic Plan for Long Term Electricity Demand and Supply", Industry and Energy, 2017. Retrieved from http://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_cd_n=81&bbs_seq_n=160040.
  3. B. M. Jenkins, L. L. Baxter, T. R. Miles Jr, and T. R. Miles, "Combustion properties of biomass", Fuel processing Technology, Vol. 54, No. 1-3, 1998, pp. 17-46, doi: https://doi.org/10.1016/S0378-3820(97)00059-3.
  4. A. Demirbas, "Combustion characteristics of different biomass fuels", Progress in Energy and Combustion Science, Vol. 30, No. 2, 2004, pp. 219-230, doi: https://doi.org/10.1016/j.pecs.2003.10.004.
  5. G. R. Gavalas, "Random Capillary Model with Application to Char Gasification at Chemically Controlled Rates", American Institute of Chemical Engineering, Vol. 26, No. 4, 1980, pp. 577-584, doi: https://doi.org/10.1002/aic.690260408.
  6. S. K. Bhatia and D. D. Perlmutter, "A Random Pore Model for Fluid-Solid Reactions: I. Isothermal, Kinetic Control", American Institute of Chemical Engineering, Vol. 26, No. 3, 1980, pp. 379-385, doi: https://doi.org/10.1002/aic.690260308.
  7. S. K. Bhatia and D. D. Perlmutter, "A Random Pore Model for Fluid-Solid Reactions: II. Diffusion and Transport Effects", American Institute of Chemical Engineering, Vol. 27, No. 2, 1981, pp. 247-254, doi: https://doi.org/10.1002/aic.690270211.
  8. K. Miura and P. L. Silverston, "Analysis of Gas-Solid Reactions by Use of a Temperature-Programmed Reaction Technique", Energy Fuels, Vol. 3, No. 2, 1989, pp. 243-249, doi: http://dx.doi.org/10.1021/ef00014a020.
  9. K. Sangtong-Ngam and M. H. Narasingha, "Kinetic study of Thai-lignite Char Gasification Using the Random Pore Model", Int. J. Sc. Tech, Vol. 13. 2008, pp. 16-26. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A87CFF93905080CE4521AD090B040F04?doi=10.1.1.566.5752&rep=rep1&type=pdf.
  10. J. Fermoso, M. V. Gil, C. Pevida, J. J. Pis, and F. Rubiera, "Kinetic models comparison for non-isothermal steam gasification of coal-biomass blend chars", Chemical Engineering Science, Vol. 161, No. 1-2, 2010, pp. 276-284, doi: https://doi.org/10.1016/j.cej.2010.04.055.
  11. M. Sahimi, G. R. Gavalas, and T. T. Tsotsis, "Statistical and Continuum Models of Fluid-Solid Reactions in Porous Media", Chemical Engineering Science, Vol. 45, No. 6, 1990, pp. 1443-1502, doi: https://doi.org/10.1016/0009-2509(90)80001-U.
  12. K. Al-Qayim, W. Nimmo, K. Hughes, and M. Pourkashanian, "Kinetic parameters of the intrinsic reactivity of woody biomass and coal chars via thermogravimetric analysis", Fuel, Vol. 210, 2017, pp. 811-825, doi: https://doi.org/10.1016/j.fuel.2017.09.010.
  13. M. V. Gil, J. Riaza, L. Alvarez, C. Pevida, J. J. Pis, and F. Rubiera, "Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in $N_2$ and $CO_2$ atmospheres", Energy, Vol. 48, No. 1, 2012, pp. 510-518, doi: https://doi.org/10.1016/j.energy.2012.10.033.
  14. M. V. Gil, J. Riaza, L. Alvarez, C. Pevida, J. J. Pis, and F. Rubiera, "Oxy-fuel combustions and morphology of coal chars obtained in $N_2$ and $CO_2$ atmospheres in an entrained flow reactor", Applied Energy, Vol. 91, No. 1, 2012, pp. 67-74, doi: https://doi.org/10.1016/j.apenergy.2011.09.017.
  15. V. Leroy, D. Cancellieri, E. Leoni, and J. L. Rossi, "Kinetic study of forest fuels by TGA : Model-free kinetic approach for the prediction of phenomena", Thermochimica Acta, Vol. 497, No. 1-2, 2010, pp. 1-6, doi: https://doi.org/10.1016/j.tca.2009.08.001.
  16. G. Grasa, R. Murillo, M. Alonso, and J. C. Abanades, "Application of the Random Pore Model to the Carbonation Cyclic Reaction", American Institute of Chemical Engineers, Vol. 55, No. 5, 2009, pp. 1246-1255, doi: https://doi.org/10.1002/aic.11746.
  17. R. C. Everson, H. W. J. P. Neomagus, and R. Kaitano, "The random pore model with intraparticle diffusion for the description of combustion of char particles derived from mineral and inertinite rich coal", Fuel, Vol. 90, No. 7, 2011, pp. 2347-2352, doi: https://doi.org/10.1016/j.fuel.2011.03.012.
  18. H. Fei, S. Hu, J. Xiang, L. Sun, P. Fu, and G. Chen, "Study on coal chars combustion under $O_2/CO_2$ atmosphere with fractal random pore model", Fuel, Vol. 90, No. 2, 2011, pp. 441-448, doi: https://doi.org/10.1016/j.fuel.2010.09.027.
  19. H. Fei, L. Sun, S. Hu, J. Xiang, Y. Song, B. Wang, and G. Chen, "The combustion reactivity of coal chars in oxyfuel atmosphere: Comparison of different random pore models", Journal of Analytical and Applied Pyrolysis, Vol. 91, No. 1, 2011, pp. 251-256, doi: https://doi.org/10.1016/j.jaap.2011.02.014.
  20. G. Wang, J. Zhang, J. Shao, Z. Liu, H. Wang, X. Li, P. Zhang, W. Geng, and G. Zhang, "Experimental and modeling studies on $CO_2$ gasification of biomass chars", Energy, Vol. 114, 2016, pp. 143-154, doi: https://doi.org/10.1016/j.energy.2016.08.002.
  21. J. S. Gupta and S. K. Bhatia, "A modified discrete random pore model allowing for different initial surface reactivity", Carbon, Vol. 38, No. 1, 2000, pp. 47-58, doi: https://doi.org/10.1016/S0008-6223(99)00095-0.
  22. K. Y. Lisandy, G. M. Kim, J. H Kim, G. B. Kim, and C. H. Jeon, "Enhanced Accuracy of the Reaction Rate Prediction Model for Carbonaceous Solid Fuel Combustion", Energy Fuels, Vol. 31, No. 5, 2017, pp. 5135-5144, doi: http://dx.doi.org/10.1021/acs.energyfuels.7b00159.
  23. G. M. Kim, J. P. Kim, K. Y. Lisandy, and C. H. Jeon, "Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite", Energies, Vol. 10, No. 9, 2017, p. 1436, doi: https://doi.org/10.3390/en10091436.
  24. S. Gil, P. Mocek, and W. Bialik, "Changes in total active centres on particle surfaces during coal pyrolysis, gasification and combustion", Chemical and Process Engineering, Vol. 32, No. 2, 2011, pp. 155-169, doi: https://doi.org/10.2478/v10176-011-0012-8.
  25. S. Dasappa, P. J. Paul, H. S. Mukunda, and U. Shrinivasa, "The gasification of wood-char spheres in $CO_2-N_2$ mixtures: analysis and experiments", Chemical Engineering Science, Vol. 49, No. 2, 1994, pp. 223-232, doi: https://doi.org/10.1016/0009-2509(94)80040-5.
  26. H. Liu, C. Luo, M. Kaneko, S. Kato, and T. Kojima, "Unification of Gasification Kinetics of Char in $CO_2$ at Elevated Temperatures with a Modified Random Pore Model", Energy Fuels, Vol. 17, No. 4, pp. 961-970, doi: http://dx.doi.org/10.1021/ef020231m.
  27. K. Raghunathan and R. Y. K. Yang, "Unification of Coal Gasification Data and Its Applications", Ind. Eng. Chem. Res., Vol. 28, No. 5, 1989, pp. 518-523, doi: http://dx.doi.org/10.1021/ie00089a003.