DOI QR코드

DOI QR Code

액화천연가스 냉열을 이용한 단일팽창과 이단팽창 사이의 비교 연구

Comparative Study between Single-stage and Two-stage Expansion Using LNG Cold Heat

  • 노상균 (동양대학교 화공생명공학과)
  • NOH, SANGGYUN (Department of Chemical & Biomolecular Engineering, Dongyang University)
  • 투고 : 2019.03.20
  • 심사 : 2019.04.30
  • 발행 : 2019.04.30

초록

Comparative studies between single- and two-stage expansion process using LNG cold heat have been performed for a closed Rankine power generation cycle. PRO/II with PROVISION release 10.0 from Schneider Electric Company was used, and the Peng-Robinson equation of state model with Twu's alpha function was selected for the modeling and optimization of the power generation cycle using LNG cold heat. In two-stage power generation cycle, 6.7% more power was obtained compared to that of single-stage power generation cycle through the optimization works.

키워드

SSONB2_2019_v30n2_188_f0002.png 이미지

Fig. 2. PRO/II flow sheet diagram for a closed single-stage Rankine power generation cycle using LNG cold heat

SSONB2_2019_v30n2_188_f0003.png 이미지

Fig. 3. PRO/II flow sheet diagram for a closed two-stage Rankine power generation cycle using LNG cold heat

SSONB2_2019_v30n2_188_f0004.png 이미지

Fig. 4. Total power obtained from two expanders vs. expander outlet pressure

SSONB2_2019_v30n2_188_f0005.png 이미지

Fig. 1. Flow sheet diagram for a closed Rankine power generation cycle

Table 1. Power generation cycle simulation results summary

SSONB2_2019_v30n2_188_t0001.png 이미지

Table 2. LNG compositions

SSONB2_2019_v30n2_188_t0002.png 이미지

Table 3. Critical temperature, critical presssure and acentric factor

SSONB2_2019_v30n2_188_t0003.png 이미지

Table 4. Coefficients in alpha function

SSONB2_2019_v30n2_188_t0004.png 이미지

Table 5. Melting point and critical pressure of propane

SSONB2_2019_v30n2_188_t0005.png 이미지

Table 6. Single-stage Rankine cycle results summary

SSONB2_2019_v30n2_188_t0006.png 이미지

Table 7. Double-stage Rankine cycle results summary

SSONB2_2019_v30n2_188_t0007.png 이미지

참고문헌

  1. J. M. Smith, H. C. Van Ness, M. M. Abbott, and M. T. Swihart, "Introduction to Chemical Engineering Thermodynamics", 8th ed., McGraw-Hill Higher Education, USA, 2018, pp. 1-4.
  2. S. I. Sandler, "Chemical, Biochemical, and Engineering Thermodynamics", 4th ed., John Wiley & Sons, Inc., USA, 2006, pp. 4-5.
  3. J. H. Cho, "Energy Saving Through Process Improvement, $CO_2$ Capture and Unutilized Energy Utilization Technology", A-JIN, Korea, 2018, pp. 165-178.
  4. J. H. Cho, J. G. Park, S. T. Kim, "Simulation of Chemical Process Using Pro/II with PROVISION", A-JIN, Korea, 2004, pp. 49-61.
  5. Y. D. Peng and D. B. Robinson, "A New Two-Constant Equation of State", Ind. and Eng. Chem. Fund. Vol. 15, No. 1, 1976, pp. 59-64, doi: https://doi.org/10.1021/i160057a011.
  6. G. M. Kontogeorgis and G. K. Folas, "Thermodynamic Models for Industrial Applications", John Wiley & Sons, Inc., USA, 2009, pp. 41-42, doi: https://doi.org/10.1002/9780470747537.
  7. C. H. Twu, D. Bluck, J. R. Cunningham, and J. E. Coon, "A Cubic Equation of State with a New Alpha Function and a New Mixing Rule", Fluid Phase Equilib., Vol. 69, 1991, pp. 33-50, doi: https://doi.org/10.1016/0378-3812(91)90024-2.