DOI QR코드

DOI QR Code

ON THE LAGRANGIAN FILLABILITY OF ALMOST POSITIVE LINKS

  • Tagami, Keiji (Department of Mathematics Faculty of Science and Technology Tokyo University of Science)
  • Received : 2018.06.19
  • Accepted : 2018.09.21
  • Published : 2019.05.01

Abstract

In this paper, we prove that a link which has an almost positive diagram with a certain condition is Lagrangian fillable.

Keywords

DBSHBB_2019_v56n3_789_f0001.png 이미지

FIGURE 1. A 0-handle attaching (left). A 1-handle attaching (right).

DBSHBB_2019_v56n3_789_f0002.png 이미지

FIGURE 2. An exact Legendrian cobordism from Λ'' to Λ. In the third line, we use a 1-handle attaching. In the fourth line,we use a Legendrian isotopy. In this picture, for simplicity,we suppose that there is no crossing oriented upward. In the case where there are some crossings oriented upward, we can construct a Legendrian cobordism similarly.

DBSHBB_2019_v56n3_789_f0003.png 이미지

FIGURE 3. Bunching deformation

DBSHBB_2019_v56n3_789_f0004.png 이미지

FIGURE 5. Two almost positive diagrams of 10145, which is an almost positive knot. The left diagram satis es (P1). The right diagram satisfies (P2).

DBSHBB_2019_v56n3_789_f0005.png 이미지

FIGURE 6. Deformation near the negative crossing

DBSHBB_2019_v56n3_789_f0006.png 이미지

FIGURE 7

DBSHBB_2019_v56n3_789_f0007.png 이미지

FIGURE 8. The proof of Theorem 1.6 for s = 2. A box in this picture represents a positive crossing. The front projection ∆ of the Legendrian link Λ is the left. By using the Legen-drian version of the Reidemeister move II, we obtain the right diagram ∆'.

DBSHBB_2019_v56n3_789_f0008.png 이미지

FIGURE 9. An almost positive knot introduced by Stoimenow [40, Example 6.1].

DBSHBB_2019_v56n3_789_f0009.png 이미지

FIGURE 10. The knot Kn has an almost positive diagram satisfying (P2) (right). The crossing p is the negative crossing.

DBSHBB_2019_v56n3_789_f0010.png 이미지

FIGURE 4. (color online) Sketch for the proof of Lemma 3.1. The picture (i) is D. In pictures (ii)-(ix), we draw a crossing derived from a crossing of D by a rectangle.

TABLE 1. The Lagrangian llability of non-alternating knots with up to 10 crossings. For example, 819 or its mirror is Lagrangian fillable. Neither 820 nor its mirror is Lagrangian fillable. To prove "Yes*", we find front projections with maximal Thurston-Bennequin numbers and use Theorem 2.1. To find such diagrams, we refer to [9] and [11].

DBSHBB_2019_v56n3_789_t0001.png 이미지

References

  1. T. Abe, The Rasmussen invariant of a homogeneous knot, Proc. Amer. Math. Soc. 139 (2011), no. 7, 2647-2656. https://doi.org/10.1090/S0002-9939-2010-10687-1
  2. T. Abe and K. Tagami, Fibered knots with the same 0-surgery and the slice-ribbon conjecture, Math. Res. Lett. 23 (2016), no. 2, 303-323. https://doi.org/10.4310/MRL.2016.v23.n2.a1
  3. T. Abe and K. Tagami, Characterization of positive links and the s-invariant for links, Canad. J. Math. 69 (2017), no. 6, 1201-1218. https://doi.org/10.4153/CJM-2016-030-7
  4. N. A'Campo, Generic immersions of curves, knots, monodromy and Gordian number, Inst. Hautes Etudes Sci. Publ. Math. No. 88 (1998), 151-169 (1999). https://doi.org/10.1007/BF02701769
  5. S. Baader, Quasipositivity and homogeneity, Math. Proc. Cambridge Philos. Soc. 139 (2005), no. 2, 287-290. https://doi.org/10.1017/S0305004105008698
  6. D. Bennequin, Entrelacements et equations de Pfaff, in Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982), 87-161, Asterisque, vol. 107, Soc. Math. France, Paris, 1983.
  7. M. Boileau and S. Orevkov, Quasi-positivite d'une courbe analytique dans une boule pseudo-convexe, C. R. Acad. Sci. Paris Ser. I Math. 332 (2001), no. 9, 825-830. https://doi.org/10.1016/S0764-4442(01)01945-0
  8. F. Bourgeois, J. M. Sabloff, and L. Traynor, Lagrangian cobordisms via generating families: construction and geography, Algebr. Geom. Topol. 15 (2015), no. 4, 2439-2477. https://doi.org/10.2140/agt.2015.15.2439
  9. J. C. Cha and C. Livingston, KnotInfo, http://www.indiana.edu/%7eknotinfo/.
  10. B. Chantraine, Lagrangian concordance of Legendrian knots, Algebr. Geom. Topol. 10 (2010), no. 1, 63-85. https://doi.org/10.2140/agt.2010.10.63
  11. W. Chongchitmate and L. Ng, An atlas of Legendrian knots, Exp. Math. 22 (2013), no. 1, 26-37. https://doi.org/10.1080/10586458.2013.750221
  12. C. Cornwell, L. Ng, and S. Sivek, Obstructions to Lagrangian concordance, Algebr. Geom. Topol. 16 (2016), no. 2, 797-824. https://doi.org/10.2140/agt.2016.16.797
  13. P. R. Cromwell, Homogeneous links, J. London Math. Soc. (2) 39 (1989), no. 3, 535-552. https://doi.org/10.1112/jlms/s2-40.3.535
  14. G. Dimitroglou Rizell, Legendrian ambient surgery and Legendrian contact homology, J. Symplectic Geom. 14 (2016), no. 3, 811-901. https://doi.org/10.4310/JSG.2016.v14.n3.a6
  15. T. Ekholm, Rational SFT, linearized Legendrian contact homology, and Lagrangian Floer cohomology, in Perspectives in analysis, geometry, and topology, 109-145, Progr. Math., 296, Birkhauser/Springer, New York, 2012.
  16. T. Ekholm, K. Honda, and T. Kalman, Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2627-2689. https://doi.org/10.4171/JEMS/650
  17. Y. Eliashberg, Topology of 2-knots in $R^4$ and symplectic geometry, in The Floer memorial volume, 335-353, Progr. Math., 133, Birkhauser, Basel, 1995.
  18. J. Franks and R. F. Williams, Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303 (1987), no. 1, 97-108. https://doi.org/10.1090/S0002-9947-1987-0896009-2
  19. D. Fuchs and T. Ishkhanov, Invariants of Legendrian knots and decompositions of front diagrams, Mosc. Math. J. 4 (2004), no. 3, 707-717, 783. https://doi.org/10.17323/1609-4514-2004-4-3-707-717
  20. D. Fuchs and S. Tabachnikov, Invariants of Legendrian and transverse knots in the standard contact space, Topology 36 (1997), no. 5, 1025-1053. https://doi.org/10.1016/S0040-9383(96)00035-3
  21. W. Gibson and M. Ishikawa, Links and Gordian numbers associated with generic immersions of intervals, Topology Appl. 123 (2002), no. 3, 609-636. https://doi.org/10.1016/S0166-8641(01)00224-3
  22. K. Hayden and J. M. Sabloff, Positive knots and Lagrangian fillability, Proc. Amer. Math. Soc. 143 (2015), no. 4, 1813-1821. https://doi.org/10.1090/S0002-9939-2014-12365-3
  23. M. Ishikawa, On the Thurston-Bennequin invariant of graph divide links, Math. Proc. Cambridge Philos. Soc. 139 (2005), no. 3, 487-495. https://doi.org/10.1017/S0305004105008741
  24. T. Kawamura, Quasipositivity of links of divides and free divides, Topology Appl. 125 (2002), no. 1, 111-123. https://doi.org/10.1016/S0166-8641(01)00264-4
  25. T. Kawamura, Links associated with generic immersions of graphs, Algebr. Geom. Topol. 4 (2004), 571-594. https://doi.org/10.2140/agt.2004.4.571
  26. L. Lewark, P. Feller, and A. Lobb, Almost positive links are strongly quasipositive, arXiv: 1809.06692v1.
  27. H. R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 1, 107-109. https://doi.org/10.1017/S0305004100063982
  28. T. Nakamura, Four-genus and unknotting number of positive knots and links, Osaka J. Math. 37 (2000), no. 2, 441-451.
  29. L. Ng, A Legendrian Thurston-Bennequin bound from Khovanov homology, Algebr. Geom. Topol. 5 (2005), 1637-1653. https://doi.org/10.2140/agt.2005.5.1637
  30. O. Plamenevskaya, Bounds for the Thurston-Bennequin number from Floer homology, Algebr. Geom. Topol. 4 (2004), 399-406. https://doi.org/10.2140/agt.2004.4.399
  31. O. Plamenevskaya, Transverse knots and Khovanov homology, Math. Res. Lett. 13 (2006), no. 4, 571-586. https://doi.org/10.4310/MRL.2006.v13.n4.a7
  32. J. H. Przytycki, Positive knots have negative signature, Bull. Polish Acad. Sci. Math. 37 (1989), no. 7-12, 559-562 (1990).
  33. J. H. Przytycki and K. Taniyama, Almost positive links have negative signature, J. Knot Theory Ramifications 19 (2010), no. 2, 187-289. https://doi.org/10.1142/S0218216510007838
  34. L. Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 51-59. https://doi.org/10.1090/S0273-0979-1993-00397-5
  35. L. Rudolph, Quasipositive plumbing (constructions of quasipositive knots and links. V), Proc. Amer. Math. Soc. 126 (1998), no. 1, 257-267. https://doi.org/10.1090/S0002-9939-98-04407-4
  36. L. Rudolph, Positive links are strongly quasipositive, in Proceedings of the Kirbyfest (Berkeley, CA, 1998), 555-562, Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999.
  37. D. Rutherford, Thurston-Bennequin number, Kauffman polynomial, and ruling invariants of a Legendrian link: the Fuchs conjecture and beyond, Int. Math. Res. Not. 2006 (2006), Art. ID 78591, 15 pp.
  38. J. M. Sabloff, Augmentations and rulings of Legendrian knots, Int. Math. Res. Not. (2005), no. 19, 1157-1180.
  39. A. N. Shumakovitch, Rasmussen invariant, slice-Bennequin inequality, and sliceness of knots, J. Knot Theory Ramifications 16 (2007), no. 10, 1403-1412. https://doi.org/10.1142/S0218216507005889
  40. A. Stoimenow, GauBdiagram sums on almost positive knots, Compos. Math. 140 (2004), no. 1, 228-254. https://doi.org/10.1112/S0010437X03000174
  41. A. Stoimenow, On polynomials and surfaces of variously positive links, J. Eur. Math. Soc. (JEMS) 7 (2005), no. 4, 477-509. https://doi.org/10.4171/JEMS/36
  42. A. Stoimenow, Minimal genus of links and fibering of canonical surfaces, Illinois J. Math. 59 (2015), no. 2, 399-448. https://doi.org/10.1215/ijm/1462450708
  43. K. Tagami, The Rasmussen invariant, four-genus and three-genus of an almost positive knot are equal, Canad. Math. Bull. 57 (2014), no. 2, 431-438. https://doi.org/10.4153/CMB-2014-005-7
  44. T. Tanaka, Maximal Bennequin numbers and Kauffman polynomials of positive links, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3427-3432. https://doi.org/10.1090/S0002-9939-99-04983-7
  45. S. Yamada, The minimal number of Seifert circles equals the braid index of a link, Invent. Math. 89 (1987), no. 2, 347-356. https://doi.org/10.1007/BF01389082