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ON THE LAGRANGIAN FILLABILITY OF ALMOST

POSITIVE LINKS

Keiji Tagami

Abstract. In this paper, we prove that a link which has an almost pos-

itive diagram with a certain condition is Lagrangian fillable.

1. Introduction

A knot is a smooth embedding of a circle into R3 and a link is a smooth
embedding of disjoint circles into R3. An oriented link is positive if it has a link
diagram whose crossings are all positive. An oriented link is almost positive if it
is not positive and has a link diagram with exactly one negative crossing. Such
a diagram is called an almost positive diagram. It is known that almost positive
links have many properties similar to those of positive links (for example, see
[13], [32], [33], [41] and [43]). For this reason, in general, it is hard to distinguish
positive links from almost positive links.

In [22], Hayden and Sabloff studied positive knots in the light of contact
and symplectic topology. In particular, they considered Lagrangian fillings of
links in the symplectisation of the standard contact 3-manifold (R3, ξstd) and
showed the following. For the definition of Lagrangian fillings, see Section 2.

Theorem 1.1 ([22, Theorem 1.1]). All positive links are exact Lagrangian
fillable.

Naturally, we can consider the following question.

Question 1.2. Is any almost positive link exact Lagrangian fillable?

Here, we recall Hayden and Sabloff’s observation on Lagrangian fillability
[22]. By the results of Eliashberg [17], a Lagrangian fillable knot is isotopic
to a transverse knot with a symplectic filling. By the work of Boileau and
Orevkov [7], we see that such a knot is quasipositive. Moreover, an exact
Lagrangian filling of a Legendrian knot induces a 2-graded normal ruling of
the knot. (In fact, by Ekholm [15], and Ekholm, Honda and Kálmán [16],
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an exact Lagrangian filling induces an (ungraded) augmentation. Because our
Lagrangian fillings are oriented, such augmentations are 2-graded (see [12, Re-
mark 2.3]). By Fuchs and Ishkhanov [19] and Sabloff [38], it is shown that the
existence of a 2-graded augmentation is equivalent to that of a 2-graded nor-
mal ruling.) By Rutherford’s work [37], for such a Legendrian knot, the HOM-
FLYPT bound on the maximal Thurston-Bennequin number is sharp, that is,
TB(K) = −max degv PK(v, z) − 1, where TB(K) is the maximal Thurston-
Bennequin number of K and PK(v, z) is the HOMFLYPT polynomial of K. In
[22], Hayden and Sabloff conjectured the following.

Conjecture 1.3 ([22, Conjecture 1.3]). A knot is exact Lagrangian fillable
if and only if it is quasipositive and the HOMFLYPT bound on the maximal
Thurston-Bennequin number of K is sharp.

On the other hand, the following are known:

• if K is Lagrangian fillable, then TB(K) = 2g4(K) − 1, where g4(K)
is the 4-ball genus of K. Moreover g4(K) is equal to the genus of its
Lagrangian filling [10],
• tb(Λ) + |r(Λ)| ≤ 2g4(K) − 1 ≤ 2g3(K) − 1, where Λ is a Legendrian

representative of K, g3(K) is the genus of K, tb(Λ) is the Thurston-
Bennequin number and r(Λ) is the rotation number of Λ [6, 34],
• tb(Λ)+ |r(Λ)| ≤ 2τ(K)−1, where τ(K) is the Ozsváth-Szabó invariant

of K [30],
• tb(Λ) + |r(Λ)| ≤ s(K) − 1, where s(K) is the Rasmussen invariant of
K [31, 39],
• tb(Λ) + |r(Λ)| ≤ −max degv PK(v, z)− 1 [18,27] (see also [20]).

It is well known that if K is quasipositive, we see that s(K) and 2τ(K) are
equal to 2g4(K) ([39] for s and [30] for τ). Hence, we obtain the following.

Corollary 1.4. If a knot K is exact Lagrangian fillable, then K is quasipositive
and satisfies

TB(K) + 1 = 2τ(K) = s(K) = 2g4(K) = −max degv PK(v, z).

Remark 1.5. The Lagrangian fillability implies r(Λ) = 0. When r(Λ) = 0, it is
known that the sharpness of the HOMFLYPT bound induces the sharpness of
the Kauffman bound on tb(Λ) [37], and the sharpness of the Rasmussen bound
induces the sharpness of the Khovanov bound on tb(Λ) [29].

In this paper, we prove Theorem 1.6 below.

Theorem 1.6. Let D be an almost positive link diagram of a link L. Suppose
that there is a positive crossing connecting the two Seifert circles which are
connected by the negative crossing. Then L is exact Lagrangian fillable.

In this paper, the condition supposed in Theorem 1.6 is called (P2).
Hayden-Sabloff [22] have proved that Lagrangian fillability and strongly

quasipositivity are independent conditions. In particular, they gave a La-
grangian fillable and non-strongly quasipositive knot. In Section 5, we give
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infinitely many almost positive (in particular, non-positive), Lagrangian fill-
able and strongly quasipositive knots (Theorem 5.1).

This paper is organized as follows: In Section 2, we recall the definition of
Lagrangian fillings. In Section 3, we recall the bunching deformation, which is
a key tool to prove the main result. In Section 4, we prove Theorem 1.6 (The-
orem 4.1). In Section 5, we give infinitely many almost positive, Lagrangian
fillable and strongly quasipositive knots. In Section 6, we compare the La-
grangian fillability and the positivity of links.

Throughout this paper, we suppose that links and Legendrian links are ori-
ented. In our pictures, the y-coordinate is the horizontal coordinate and the
z-coordinate is the vertical coordinate.

2. Lagrangian fillings

In this section, we recall the definition of Lagrangian fillings and describe a
tool which allows us to construct Lagrangian fillings.

The standard contact structure ξstd on R3 is Kerα, where α = dz + xdy. A
Legendrian link in (R3, ξstd) is a smooth embedding of disjoint circles which are
tangent to ξstd. A front projection of a Legendrian link is the image of the link
under the (y, z)-projection. A Legendrian link Λ is a Legendrian representative
of a link L if Λ is isotopic to L in smooth category. The symplectisation of
(R3, ξstd) is the symplectic 4-manifold (R × R3, d(etα)), where t is the first
coordinate. Let Λ0 and Λ1 be oriented Legendrian links in (R3, ξstd). Let Σ be
an oriented Lagrangian submanifold in the symplectisation, that is, an oriented
2-submanifold with d(etα)|Σ = 0. Then, Σ is a Lagrangian cobordism from Λ0

to Λ1 with cylindrical Legendrian ends E± if there exists a pair of real numbers
T− < T+ such that

• E+ := Σ ∩ (T+,∞)×R3 = (T+,∞)× Λ1,
• E− := Σ ∩ (−∞, T−)×R3 = (−∞, T−)× Λ0, and
• Σ \ (E+ ∪E−) is a compact oriented surface with boundary Λ1 ∪ (−Λ0).

Moreover, if etα|Σ is exact and f is constant on each of E± whenever df =
etα|Σ, we call Σ an exact Lagrangian cobordism. If there exists a Lagrangian
cobordism Σ from Λ0 to Λ1, we say Λ0 is Lagrangian cobordant to Λ1 (denoted
by Λ0 ≺Σ Λ1). An oriented Legendrian link Λ is Lagrangian fillable if ∅ ≺Σ Λ.
Then Σ is called a Lagrangian filling of Λ. A smooth oriented link is Lagrangian
fillable if it has a Legendrian representative with a Lagrangian filling (see [10]).
Similarly, exact Lagrangian cobordisms, exact Lagrangian fillablility and exact
Lagrangian fillings are defined.

Here, we introduce tools to construct (exact) Lagrangian cobordisms.

Theorem 2.1 ([22, Theorem 2.2], [8,10,14,16]). Let Λ0 and Λ1 be Legendrian
links in (R3, ξstd). If one of the following holds, we obtain Λ0 ≺Σ Λ1 with an
exact Lagrangian cobordism Σ.
Isotopy: Λ0 and Λ1 are Legendrian isotopic.
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0-handle: a front projection of Λ1 is a disjoint union of a front projection of
Λ0 and a front projection of the Legendrian unknot with tb = −1 and rot = 0
(see the left picture in Figure 1).
1-handle: a front projection of Λ1 and a front projection of Λ0 are related as
the right picture in Figure 1.

Figure 1. A 0-handle attaching (left). A 1-handle attaching (right).

Lemma 2.2. Let ∆ be a front projection of a Legendrian link Λ. Let Γ be a
Seifert circle of ∆. Suppose that Γ satisfies the following:

• Γ is an innermost Seifert circle of ∆,
• every crossing adjacent to Γ has both strands oriented downward or

upward with respect to the y-coordinate as the top picture in Figure 2
(in particular, it is positive crossing), and
• Γ has exactly one left cusp and one right cusp (in particular, they

are the local minimum and local maximum of Γ with respect to the
y-coordinate).

Let Λ′ be the Legendrian link which has the front projection obtained from
∆ by removing Γ and its adjacent crossings. Then, Λ �Σ Λ′ with an exact
Lagrangian cobordism Σ.

Proof. This proof is essentially due to Hayden and Sabloff [22]. Let c be the
number of the crossings adjacent to Γ. We prove by induction on c. If c =
0, by Theorem 2.1 (0-handle attaching), we obtain Λ �Σ Λ′. Suppose that
Lemma 2.2 is true if c < k. Let c = k. Let ∆′′ be the front projection
of a Legendrian link Λ′′ obtained by removing the lowest (positive) crossing
adjacent to Γ with respect to the y-coordinate. Then, by Figure 2, we see that
Λ �Σ′ Λ′′. By the induction hypothesis, Λ′′ �Σ′′ Λ′. Hence, Λ �Σ Λ′. In this
proof, we only use Theorem 2.1. Hence, Lagrangian cobordisms are all exact.

�

3. Bunching deformation

In this section, we recall an operation called bunching deformation [45].
Two disjoint oriented circles on S2 = R2 ∪ {∞} are coherent if they are

homologous on A, where A is the annulus bounded by the circles on S2. Let
D be a link diagram, and C1 and C2 be distinct Seifert circles of D. Suppose
that C1 and C2 are not coherent and there is a band b on S2 such that b∩D =
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Figure 2. An exact Legendrian cobordism from Λ′′ to Λ. In
the third line, we use a 1-handle attaching. In the fourth line,
we use a Legendrian isotopy. In this picture, for simplicity,
we suppose that there is no crossing oriented upward. In the
case where there are some crossings oriented upward, we can
construct a Legendrian cobordism similarly.

∂b ∩ (C1 ∪ C ′2) = d1 ∪ d2, where C ′2 is a slight large copy of C2, d1 is a subarc
of C1 and d2 is a subarc of C ′2. Put C ′1 = C1 ∪ C ′2 ∪ ∂b \ (d1 ∪ d2). Then,
we call the operation replacing C1 with C ′1 by a bunching deformation along
b (see Figure 3). This deformation corresponds to the “bunching operation
of type II” [45]. It is well known that by using the bunching deformation,
Yamada [45] proved that the minimal number of Seifert circles of a link equals
the minimal braid index of the link. By utilizing this deformation, Tanaka [44]
found a Legendrian representative of a positive link which attains the maximal
Thurston-Bennequin number. In order to prove our results, we apply Tanaka’s
technique to almost positive diagrams.

Lemma 3.1. Let D be an almost positive diagram with the negative crossing p.
Then we can deform D into an almost positive diagram D′ on the (y, z)-plane
satisfying the following:

(1) each crossing is oriented downward with respect to the y-coordinate,
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Figure 3. Bunching deformation

(2) each Seifert circle has exactly one local maximum and one local mini-
mum with respect to the y-coordinate,

(3) the negative crossing p is the highest crossing with respect to the y-
coordinate,

(4) the two Seifert circles connected by the negative crossing p are not
nested.

Proof. Let D be an almost positive diagram with the negative crossing p. Put
D on the (y, z)-plane so that the two Seifert circles connected by the negative
crossing p are not nested and so that they are outermost Seifert circles (see
(iii) in Figure 4). Then, connect p and the point at infinity by a path l on
S2 = R2 ∪ {∞} (see (iv) in Figure 4).

For the diagram, apply bunching deformations until one can, where

• the bands used in the bunching deformations are on S2 \ l and
• if we need to apply a bunching deformation appearing one of the two

Seifert circles connected by p, denote the Seifert circle by Sp, we apply
the bunching deformation so that Sp is outermost. In other words, Sp

plays a role of C1 in the definition of the bunching deformation.

Note that in the resulting diagram, the two Seifert circles connected by p are
the only outermost Seifert circles (see (v) in Figure 4, which is obtained from
(iv) by applying bunching deformations along the red dotted arcs). Here, we
draw the subrarcs d1 which are used in the bunching deformations as blue
dotted arcs (in (v)-(viii) in Figure 4, we draw the subarcs by the blue dotted
arcs).

Then, by isotopy on S2 \ l, we can deform the diagram so that it is presented
by the closure of a braid (see (vi) in Figure 4). Notice that the closure is taken
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Figure 4. (color online) Sketch for the proof of Lemma 3.1.
The picture (i) is D. In pictures (ii)-(ix), we draw a crossing
derived from a crossing of D by a rectangle.
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in S2 \ l. After the isotopy, the negative crossing p may not be the highest
crossing with respect to the y-coordinate (the horizontal coordinate). In that
case, by taking an appropriate conjugate for the braid, deform the diagram
so that p is the highest crossing with respect to the y-coordinate (see (vii) in
Figure 4).

Now this diagram satisfies (1)–(4) but it is not almost positive. If we can
apply the inverse of the bunching deformations which preserves (1)–(4), we
finish the proof. However, in general, the blue dotted arcs d1 have some local
maxima and minima with respect to the y-coordinate, and the inverse of the
bunching deformations along the blue dotted arcs d1 does not preserve (2). So,
we delete these maxima and minima as follows: for each blue dotted arc d1,
deform d1 so that the two endpoints lie on the braid, and consider the disk
bounded by the union of d1 and the line segment connecting the two endpoints
of d1 (see the gray area in (vii) in Figure 4). Firstly, we take an outermost one
of such disks and shrink the disk by an isotopy which fixes the line segment until
the corresponding blue dotted arc d1 has no local maximum and local minimum
with respect to the y-coordinate (see (viii) in Figure 4). Here, “outermost”
means the disk is not contained in other disks. Note that such an isotopy
does not deform the diagram at the outside of the disk. Secondly, we take an
outermost one of the remaining disks and deform similarly. By repeating this
deformation inductively, we delete all local maxima and local minima of all
blue dotted arcs.

Finally, by the inverse of the bunching deformations along the blue dotted
arcs, we obtain the desired diagram (see (ix) in Figure 4). �

4. The Lagrangian fillability of almost positive links

In this section, we consider the Lagrangian fillability of almost positive links.
Let D be an almost positive link diagram of a link L with negative crossing

p. Then, D satisfies one of the following properties:

(P1): there is no positive crossing joining the two Seifert circles which are
connected by p (see the left of Figure 5),

(P2): there is a positive crossing joining the two Seifert circles which are
connected by p (see the right of Figure 5).

In [41], Stoimenow considered the two properties and computed the genera of
almost positive knots. In [43], the author also considered these properties and
computed the Rasmussen invariants and 4-ball genera of almost positive knots
(see also [3]). By the following result, we see that if D satisfies (P2), then L is
Lagrangian fillable.

Theorem 4.1 (Theorem 1.6). Let D be an almost positive link diagram of
a link L with negative crossing p with the property (P2). Then L is exact
Lagrangian fillable.
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Figure 5. Two almost positive diagrams of 10145, which is
an almost positive knot. The left diagram satisfies (P1). The
right diagram satisfies (P2).

Proof. By Lemma 3.1, the diagram D can be transformed into an almost pos-
itive diagram D′ on the (y, z)-plane satisfying the following:

(0) the property (P2),
(1) each crossing is oriented downward with respect to the y-coordinate,
(2) each Seifert circle has exactly one local maximum and one local mini-

mum with respect to the y-coordinate,
(3) the negative crossing p is the highest crossing with respect to the y-

coordinate,
(4) the two Seifert circles connected by the negative crossing p are not

nested.

We remark that D′ satisfies (0) because D and D′ are isotopic on S2 (see the
proof of Lemma 3.1). In order to construct a Legendrian representative of L
with an exact Lagrangian filling, firstly, we deformD′ near the negative crossing
as in Figure 6. After this deformation, one of the Seifert circles connected by
the negative crossing does not satisfy the condition (2) anymore. Next, we
deform D′ near each local maximum or local minimum as in Figure 7. Then,
we obtain a front projection ∆ of a Legendrian representative Λ of L. Let s

Figure 6. Deformation near the negative crossing

be the number of the Seifert circles of ∆. We prove that Λ is exact Lagrangian
fillable by the induction on s.

If s = 2, the front projection ∆ is as the left in Figure 8. By the Legendrian
version of Reidemeister move II, we obtain another front projection ∆′ of Λ
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Figure 7

Figure 8. The proof of Theorem 1.6 for s = 2. A box in this
picture represents a positive crossing. The front projection
∆ of the Legendrian link Λ is the left. By using the Legen-
drian version of the Reidemeister move II, we obtain the right
diagram ∆′.

from ∆ as the right in Figure 8. By Lemma 2.2 (or [22, Proof of Theorem 1.1
or Remark 3.2]), we see that the Legendrian link with the front projection ∆′,
that is Λ, is exact Lagrangian fillable.

Suppose s ≥ 3. Then, we can suppose that there exists a Seifert circle Γ of ∆
such that it is an innermost circle and it is not adjacent to the negative crossing.
In fact, if there is no such circle, all Seifert circles except the two Seifert circles
connected by the negative crossing contain the two circles. In that case, we
can remove the negative crossing by the Legendrian version of Reidemeister
move II and prove that Λ is exact Lagrangian fillable by the same discussion
as the case s = 2. Otherwise, such a Seifert circle Γ satisfies the assumption of
Lemma 2.2. Hence, Λ �Σ Λ′, where Λ′ is a Legendrian link which has the front
projection obtained from ∆ by removing Γ and its adjacent crossings. Note
that this Lagrangian cobordism is exact. By the induction hypothesis, Λ′ is
exact Lagrangian fillable, and so is Λ. �

Corollary 4.2. Let D be an almost positive knot diagram of a knot K with
the property (P2). Then, we obtain

TB(K) + 1 = 2τ(K) = s(K) = 2g4(K) = 2g3(K) = −max degv PK(v, z)

= 2g3(D)− 2,

where g3(D) is the genus of the Seifert surface obtained from D by Seifert’s
algorithm.
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Proof. Stoimenow [41, Corollary 5 and the proof of Theorems 5 and 6] proved
that g3(K) = g3(D) − 1. The author [43] proved that g4(K) = g3(K) for any
almost positive knot K. Hence, by Corollary 1.4, we finish the proof. We
remark that we obtain a 2-graded normal ruling of Λ by switching all positive
crossings except the positive crossing given in the property (P2), where Λ
is the exact Lagrangian fillable Legendrian knot constructed in the proof of
Theorem 4.1. �

Remark 4.3. The author [43, Remark 3.1] conjectured that any almost positive
diagram of an almost positive knot satisfies (P1). However, it is false. In fact,
it is known that 10145 is almost positive. On the other hand, 10145 has an
almost positive diagram satisfying (P2) (see Figure 5). In [42, Theorem 1.4]
Stoimenow proved that there exist almost positive knots with either none or
all of their almost positive diagrams having minimal genus. More precisely,
Stoimenow proved that there are two almost positive knotsK1 andK2 such that
any almost positive diagram D1 of K1 satisfies (P1) and any almost positive
diagram D2 of K2 satisfies (P2). By [41, Corollary 5], we have g(D1) = g3(K1)
and g(D2) − 1 = g3(K2). This is the negative answer to [41, Question 3]
which asks whether any almost positive link has an almost positive diagram of
minimal genus.

5. Non-positive, Lagrangian fillable and strongly quasipositive
knots

The Lagrangian fillabilities of knots imply their quasipositivities. On one
hand, Hayden and Sabloff [22] mentioned that Lagrangian fillability and strong-
ly quasipositivity are independent conditions. The most famous class of La-
grangian fillable and strongly quasipositive knots are positive knots. Then, it is
a natural question whether any Lagrangian fillable and strongly quasipositive
knot is a positive knot. In this section, we give infinitely many almost posi-
tive (in particular, non-positive), Lagrangian fillable and strongly quasipositive
knots.

Theorem 5.1. For any n ∈ Z>0, the knot Kn depicted in Figure 9 is almost
positive, exact Lagrangian fillable and strongly quasipositive knot.

Proof. Stoimenow [40, Example 6.1] proved that Kn is almost positive. Abe
and the author [3, Figure 17] gave a Seifert surface of Kn which is represented
by a Murasugi sum of some quasipositive surfaces. By Rudolph’s work [35],
such a surface is a quasipositive, in particular, Kn is strongly quasipositive.
Finally, we prove that Kn is exact Lagrangian fillable. By Figure 10, the knot
Kn has an almost positive diagram satisfying (P2). By Theorem 1.6, it is exact
Lagrangian fillable. �

Remark 5.2. Recently, Feller, Lewark and Lobb [26] proved that almost posi-
tive links are strongly quasipositive. Their result gives a positive answer to a
question given by Stoimenow [41, Question 4].
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Figure 9. An almost positive knot introduced by Stoimenow
[40, Example 6.1].

Figure 10. The knot Kn has an almost positive diagram sat-
isfying (P2) (right). The crossing p is the negative crossing.

6. Further discussion

In this section, we consider the positivity and Lagrangian fillability of links.
It is known that positive links are homogeneous and strongly quasipositive (see
[13, 28, 36]) and the converse is also true (see [5] and see also [1, 3]). Hayden
and Sabloff [22] proved that positive links are exact Lagrangian fillable, and
Lagrangian fillable links are quasipositive.

A’Campo [4] defined divide links. Gibson and Ishikawa [21] constructed free
divide links as an extension of divide links. Kawamura [25] defined the class
of graph divide links, which is an extension of the class of free divide links,
and proved that they are quasipositive. We note that the quasipositivity of
free divide links was proved by Kawamura [24] before [25]. Abe and the author
[2, Lemma 3.2] proved that the original divide links are strongly quasipositive.
Tomomi Kawamura taught the author that this fact had been proved by Mikami
Hirasawa (see also [25, Remark 6.9]). Ishikawa [23] proved that the maximal
Thurston-Bennequin number of any graph divide link is equal to its slice Euler
characteristic. This means graph divide links satisfy a necessary condition to
be Lagrangian fillable.

Hence we obtain the following, where P stands for positive, LF Lagrangian
fillable, H homogeneous, QP quasipositive, SQP strongly quasipositive, and
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Div divide:

{H links} {Div links} ⊂ {graph Div links}
∪ ∩ ∩

{H and SQP links} ⊂ {SQP links} ⊂ {QP links}
|| ∪

{P links} ⊂ {exact LF links} ⊂ {LF links}.
Then, we can consider the following questions:

Question 6.1. Are there non-positive and non-almost positive links in the set
{LF links} ∩ {SQP links}?

Question 6.2. Are there non-positive links in the set {LF links}∩{H links}?

Question 6.3. Is the set {(graph) Div links} contained in {LF links}?

Table 1. The Lagrangian fillability of non-alternating knots
with up to 10 crossings. For example, 819 or its mirror is
Lagrangian fillable. Neither 820 nor its mirror is Lagrangian
fillable. To prove “Yes∗”, we find front projections with max-
imal Thurston-Bennequin numbers and use Theorem 2.1. To
find such diagrams, we refer to [9] and [11].

name LF name LF name LF name LF
819 Yes 10127 Yes∗ 10141 No 10155 No
820 No 10128 Yes 10142 Yes 10156 No
821 Yes∗ 10129 No 10143 No 10157 Yes∗

942 No 10130 No 10144 No 10158 No
943 No 10131 Yes∗ 10145 Yes 10159 No
944 No 10132 No 10146 No 10160 No
945 Yes∗ 10133 Yes∗ 10147 No 10161 Yes
946 Yes∗ 10134 Yes 10148 No 10162 No
947 No 10135 No 10149 Yes∗ 10163 No
948 No 10136 No 10150 No 10164 No
949 Yes 10137 No 10151 No 10165 Yes∗

10124 Yes 10138 No 10152 Yes
10125 No 10139 Yes 10153 No
10126 No 10140 Yes∗ 10154 Yes

In Theorem 5.1, we give infinitely many almost positive (in particular non-
positive), Lagrangian fillable and strongly quasipositive knots. There are non-
positive, non-almost positive and Lagrangian fillable links (for example 821,
which is a graph divide knot). The author does not know any examples of non-
positive, non-almost positive, Lagrangian fillable and strongly quasipositive
links.
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On alternating and Lagrangian fillable knots, the following is proved by
Cornwell, Ng and Sivek [12].

Theorem 6.4 ([12, Theorem 4.3]). An alternating knot is Lagrangian fillable
if and only if it is a positive knot.

Proof. The “if” part has been proved by Hayden and Sabloff (Theorem 1.1).
Let K be an alternating and Lagrangian fillable knot. Let D be a reduced

alternating diagram of K with c− negative crossings. It is sufficient to prove
that c− = 0. Ng [29] prove that TB(K) = −c− − σ(K) − 1, where σ(K) is
the signature of K. It is known that s(K) = −σ(K) for any alternating knot
K. By Corollary 1.4, TB(K) = s(K) − 1 for any Lagrangian fillable knot K.
Hence, we obtain

c− = −TB(K)− σ(K)− 1 = −(s(K)− 1) + s(K)− 1 = 0. �

Finally, we give the table of Lagrangian fillable and non-alternating knots
with up to 10 crossings (up to mirror image) (see Table 1).
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