Fig. 1. Location of the place where IoT sensors are installed (Latitude: 37.708, Longitude:126.895)
Fig. 2. Flowchart of quality control using machine learning
Fig. 3. Raw data of humidity (data regarded ed as error in the basic QC are marked on the X-axis)
Fig. 4. Graph of humidity data corrected using support vector regression
Table 1. Information on sensors collecting weather data
Table 2. Details of basic quality control
Table 3. Error rate of basic quality control (%)
Table 4. Machine learning-based QC and error correction results on raw data
Table 5. Machine learning-based QC and error correction results on non-interpolated data after basic QCs
Table 6. Machine learning-based QC and error correction results on interpolated data after basic QCs
References
- N.-Y. Kim, Y.-H. Kim, Y. Yoon, H.-H. Im, R. K. Y. Choi, and Y. H. Lee. (2015). Correcting air-pressure data collected by MEMS sensors in smartphones. Journal of Sensors, Article ID 245498.
- M.-K. Lee, S.-H. Moon, Y. Yoon , Y.-H. Kim, and B.-R. Moon. (2018). Detecting anomalies in meteorological data using support vector regression. Advances in Meteorology, Article ID 5439256.
- J.-H. Ha, Y.-H. Kim, H.-H. Im, N.-Y. Kim, S. Sim, and Y. Yoon. (2018). Error correction of meteorological data obtained with Mini-AWSs based on machine learning. Advances in Meteorology, Article ID 7210137.
- Y.-H. Kim, J.-H. Ha, Y. Yoon, N.-Y. Kim, H.-H. Im, S. Sim, and R. K. Y. Choi. (2016). Improved correction of atmospheric pressure data obtained by smartphones through machine learning. Computational Intelligence and Neuroscience, Article ID 9467878.
- M.-K. Lee, S.-H. Moon, Y.-H. Kim, and B.-R. Moon. (2014. October). Correcting abnormalities in meteorological data by machine learning. IEEE International Conference on Systems, Man, and Cybernetics. (pp.888-893). San Diego : IEEE
- G.-D. Kim & Y.-H. Kim. (2018). Correction of drifter data using recurrent neural networks. Journal of the Korea Convergence Society, 9(3), 15-21. https://doi.org/10.15207/JKCS.2018.9.3.015
- A. J. Smola & B. Scholkopf. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
- U. W. Pooch. (1974). Translation of decision tables. ACM Computing Surveys, 6(2), 125-151. https://doi.org/10.1145/356628.356630
- F. Rosenblatt (1961). Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Washington DC : Spartan Books.
- J. A. Suykens & J. Vandewalle. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293-300. https://doi.org/10.1023/A:1018628609742
- N. R. Draper & H. Smith. (1998). Applied Regression Analysis, Thirds Edition.Wiley.
- M. Riedmiller & H. Braun. (1993). A direct adaptive method for faster backpropagation learning: the RPROP algorithm. IEEE International Conference on Neural Networks.. (pp.586-591).
- R. Kohavi. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence Organization, 14(2), 1137-1145. San Francisco : Morgan Kaufmann.
- E. Frank, M. A. Hall, and I. H. Witten. (2016). Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition. Morgan Kaufmann.
- M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. (2009). The WEKA data mining software: an update. Newsletter of SIGKDD Explorations, 11(1), 10-18. https://doi.org/10.1145/1656274.1656278