DOI QR코드

DOI QR Code

A Study on the Shrinkage Cracking Properties of Concrete by Using Blast Furnace Slag Cement and Frost-Resistant Accelerator

고로슬래그시멘트 및 내한촉진제를 사용한 콘크리트의 수축균열특성에 관한 연구

  • Choi, Hyeong-Gil (Graduate School of Architecture, Kyungpook National University) ;
  • Choi, Hee-Sup (Department of Civil and Environmental Engineering, Kitami Institute of Technology)
  • Received : 2018.12.05
  • Accepted : 2019.01.14
  • Published : 2019.04.20

Abstract

As a cold-weather-concrete construction technique for enhancing the sustainability and improving efficiency of cold-weather construction, the cracking timing, the starting point of deterioration for concrete, due to the shrinkage of the blast furnace slag cement concrete including accelerator was evaluated. As a result, by using blast furnace slag and accelerator, the cracking was developed faster with higher cracking potential under the restrained conditions at constant age and free-shrinkage strain. It can be considered that the results of decreased stress relaxation by creep or increased restraint with increased free-shrinkage strain causes the increased cracking development speed. Hence, it should be considered the necessary of cracking due to the shrinkage when blast furnace slag or accelerator was used for cold-weather construction.

환경부하저감 및 동절기 시공의 효율을 위해 환경부하저감형 한중콘크리트 시공기술로서 고로슬래그시멘트와 내한촉진제를 병용한 콘크리트에 있어 열화의 기점이 되는 수축균열에 관해 검토했다. 그 결과, 고로슬래그시멘트 및 내한촉진제를 첨가함으로서 자유수축변형량 및 동일재령에 있어서 균열포텐셜은 증가하는 경향으로 구속조건하에서의 균열의 발생도 빠른 것을 확인할 수 있었다. 이것은, 자유수축변형량의 증가와 함께 크리프에 의한 응력 이완량의 감소나 구속도의 증가 등이 원인으로서 생각할 수 있으며, 동절기 시공에 있어서 고로슬래그 및 내한촉진제를 적용할 때는 수축에 의한 균열발생에 대해 검토할 필요가 있다고 판단된다.

Keywords

GCSGBX_2019_v19n2_123_f0001.png 이미지

Figure 1. Overview of ring test

GCSGBX_2019_v19n2_123_f0002.png 이미지

Figure 2. Free shrinkage

GCSGBX_2019_v19n2_123_f0003.png 이미지

Figure 3. Restraint shrinkage

GCSGBX_2019_v19n2_123_f0004.png 이미지

Figure 4. Restraint stresses

GCSGBX_2019_v19n2_123_f0005.png 이미지

Figure 5. Tensile strength

GCSGBX_2019_v19n2_123_f0006.png 이미지

Figure 6. Cracking potential

GCSGBX_2019_v19n2_123_f0007.png 이미지

Figure 7. Conceptual diagram of the stress on the concrete generated by restrained shrinkage[14]

GCSGBX_2019_v19n2_123_f0008.png 이미지

Figure 8. Elastic stress, residual stress and stress relaxation (OPC-0)

GCSGBX_2019_v19n2_123_f0009.png 이미지

Figure 9. Elastic stress, residual stress and stress relaxation (OPC-4)

GCSGBX_2019_v19n2_123_f0010.png 이미지

Figure 10. Elastic stress, residual stress and stress relaxation (BB-0)

GCSGBX_2019_v19n2_123_f0011.png 이미지

Figure 11. Elastic stress, residual stress and stress relaxation (BB-4)

GCSGBX_2019_v19n2_123_f0012.png 이미지

Figure 12. Degree of restraint

Table 1. Experimental program

GCSGBX_2019_v19n2_123_t0001.png 이미지

Table 2. Materials used

GCSGBX_2019_v19n2_123_t0002.png 이미지

Table 4. Fresh Properties and compressive strength

GCSGBX_2019_v19n2_123_t0004.png 이미지

Table 5. Crack configuration and cracking days

GCSGBX_2019_v19n2_123_t0005.png 이미지

Table 3. Mix designs

GCSGBX_2019_v19n2_123_t0007.png 이미지

Table 6. Stress relaxation

GCSGBX_2019_v19n2_123_t0008.png 이미지

References

  1. Yonezawa T, Sakai E, Koibuchi K, Kinoshita M, Kawano H. Energy $CO_2$, Minimum (ECM) Cement-Concrete System. Concrete Journal. 2010 Sep;48(9):69-73.
  2. Tsuji D, Kojima M, Kuroda M, Sakata N. Study on the basic properties of concrete using high amount of ground-granulated blast-furnace slag. Proceedings of the Japan Concrete Institute; 2013 Jul 9-11; Nagoya, Japan. Tokyo (Japan): Japan Concrete Institute; 2013. p. 145-50.
  3. Yonezawa T, Sakai E, Koibuchi K, Kinoshita M. High-slag cement and structures for substantial reduction of energy . $CO_2$. fib symposium. Concrete structures for a sustainable community; 2012 Jun 11-14; Stochholm, Sweden. Stochholm (Sweden): Swedish Concrete Association; 2012. p. 163-6.
  4. Tamaki S, Saito K, Okada K, Atarashi D, Sakai E. Properties of a new type of polycarboxylate admixture for concrete using high volume blast furnace slag cement. Special Publication. 2015 Jun;302:113-24.
  5. AIJ. Recommendation for practice of concrete with portland cement and ground granulated blast-furnace slag. Tokyo: Architectural Institute of Japan; 2001. p. 61-3.
  6. AIJ. Recommendation for Practice of Cold Weather Concreting. Tokyo(Japan): Architectural Institute of Japan; 2010. 240 p.
  7. Taniguchi M, Nakamura T, Koike S, Nishi H. Study on effect and mechanism of accelerator for freeze protection. Hokkaido(Japan): Hokkaido Research Organization Northern Regional Building Research Institute; 2015 Mar. 1-11 p. Report No.: 358.
  8. Hama Y, Kamada E. The properties of concrete containing a frost-resistant accelerator. Concrete Journal. 1999 Jan;37(11):3-8. https://doi.org/10.3151/coj1975.37.11_3
  9. Nonomura Y, Shimata A, Shimada H, Yoshida S. A fundamental study on expansion of use of frost-resistant accelerator for blast furnance slag cement. Hokkaido(Japan): Civil Engineering Research Institute for Cold Region (Monthly report); 2015 Oct. 45-50 p. Report No.:749.
  10. AASHTO. Standard Practice for Estimating the Crack Tendency of Concrete. Washington, D.C.: American Association of State Highway and Transportation Officials; 1998. p. 34-99.
  11. Hossain AB, Weiss WJ. Assessing residual stress development and stress relaxation in restrained concrete ring specimens. Cement and Concrete Composites. 2004 Jul;26(5):531-40. https://doi.org/10.1016/S0958-9465(03)00069-6
  12. Weiss WJ, Fergeson S. Restrained Shrinkage Testing: The Impact of Specimen Geometry on Quality Control Testing for Material Performance Assessment: Concreep 6, Creep, Shrinkage, and Durability Mechanic of Concrete and other Quasi-Brittle Materials. Ulm FJ, Bazant ZP, and Wittman FH, eds., Elsevier, Cambridge MA. 2001. p. 645-51.
  13. Ugural AC, Fenster SK. Advanced Strength and Applied Elasticity. 3rd ed. America, New Jersey: Prentice Hall PTR, Inc.; 1995. p. 327-34.
  14. Choi HG, Lim MK, Kitagaki R, Noguchi T, Kim GY. Restrained shrinkage behavior of expansive mortar at early ages. Construction and Building Materials. 2015 Jun;84(1):468-76. https://doi.org/10.1016/j.conbuildmat.2015.03.075
  15. Noguchi T, Tomozawa F. Relationship between compressive strength and various mechanical properties of high strength concrete. Journal of Structural and Construction Engineering. 1995 Jun;60(472):11-6. https://doi.org/10.3130/aijs.60.11_3
  16. Weiss WJ. Prediction of early-age shrinkage cracking in concrete elements [dissertation]. [Evanston (Illinois)]: Northwestern University; 1999. 274 p.