DOI QR코드

DOI QR Code

Rheological Properties of Cement Paste Mixed with Aqueously Dispersed Single-Walled Carbon Nanotubes

Single-Walled 탄소나노튜브 수용액 혼입 시멘트 페이스트의 유변학적 특성

  • Kim, Ji-Hyun (Multidisciplinary Infra-technology Research Laboratory, Pukyong National University) ;
  • Chung, Chul-Woo (Department of Architectural Engineering, Pukyong National University)
  • Received : 2019.01.04
  • Accepted : 2019.02.11
  • Published : 2019.04.20

Abstract

Single walled carbon nanotube (SWCNT) has been used as a material for reinforcing various advanced materials because it has superior mechanical properties. However, pure SWCNT that does not have any functional group has a hydrophobic character, and exists as bundles due to the strong Van der Waals attraction between each SWCNT. Due to these reasons, it is very difficult to disperse SWCNTs in the water. In this work, in order to use SWCNT for production of cementitious composites, SWCNT was first dispersed in water to make an aqueous solution. Sodium deoxycholate (DOC) and Sodium dodecyl sulfate (SDS) were chosen as surfactants, and the dosage of DOC and SDS were 2wt% and 1wt%, respectively. Sonication and ultracentrifugation were applied to separate each SWCNT and impurities. Using such processed SWCNT solutions, cement paste was prepared and its shear stress vs. strain rate relationship was studied. The yield stress and plastic viscosity of cement paste were obtained using Bingham model. According to the results in this work, cement pastes made with DOC and SDS showed similar rheological behavior to that of air entrained cement paste. While cement paste made with DOC 2 wt.% SWCNT solution showed similar rheological behavior to that of plain cement paste, cement paste made with SDS 1 wt.% SWCNT solution showed different rheological behavior showing much less yield stress than plain cement paste.

SWCNT는 매우 뛰어난 역학적 성능을 가지고 있고. 이로 인해 각종 첨단 소재의 보강재료로서 각광받고 있다. 그러나 완전한 형태의 SWCNT는 소수성을 가지고 있고. 서로간에 Van der Waals 인력으로 결합되어 물에 분산이 어렵다. 본 연구에서는 SWCNT를 시멘트 복합체에 활용하기 위하여, 분산된 용액 형태로 제조하여 시멘트 복합체에 활용하고자 하였고, 이를 위한 계면활성제로 DOC 및 SDS를 선정하였다. 초음파 처리 및 초원심분리를 통해 제조된 SWCNT 수용액을 이용하여 시멘트 페이스트를 제조하여 이의 전단응력 vs. 전단변형률 관계를 확인하고, 이를 통해 소성점도 및 항복응력을 도출하였다. 본 연구의 결과에 따르면 SWCNT를 혼입하지 않은 DOC 및 SDS는 공기연행제와 유사한 유변학적 효과를 발휘하는 것으로 나타났다. DOC 2wt%를 이용해서 제조된 SWCNT 수용액으로 배합된 시멘트 페이스트는 플레인 시멘트 페이스트와 거의 유사한 유변학적 거동을 하는 것으로 나타났으나, SDS 1%를 이용해서 제조된 SWCNT 수용액으로 배합된 시멘트 페이스트는 플레인 시멘트 페이스트와 상이한 유변학적 거동을 하는 것으로 나타났다.

Keywords

GCSGBX_2019_v19n2_113_f0001.png 이미지

Figure 2. Photographic images of SWCNT solution after ultracentrifugation

GCSGBX_2019_v19n2_113_f0002.png 이미지

Figure 3. Raman spectrum of SWCNT

GCSGBX_2019_v19n2_113_f0003.png 이미지

Figure 4. Raman spectrum of dispersed SWCNT solution made with DOC 2wt%

GCSGBX_2019_v19n2_113_f0004.png 이미지

Figure 5. Raman microscope data of dispersed SWCNT solution (SDS 1wt%)

GCSGBX_2019_v19n2_113_f0005.png 이미지

Figure 6. Shear stress vs. shear rate curve obtained from the cementPaste without SWCNT

GCSGBX_2019_v19n2_113_f0006.png 이미지

Figure 7. Shear stress vs. shear rate curve obtained from the cementPaste with SWCNT solution using 2wt% DOC as a surfactant

GCSGBX_2019_v19n2_113_f0007.png 이미지

Figure 8. Shear stress vs. shear rate curve obtained from the cementPaste with SWCNT solution using 1wt% SDS as a surfactant

GCSGBX_2019_v19n2_113_f0008.png 이미지

Figure 1. Photographic images of tip sonicating process used for the dispersion of SWCNT in the deionized water

Table 1. Experimental procedures used for the preparation of SWCNT solution

GCSGBX_2019_v19n2_113_t0003.png 이미지

Table 2. Mix proportions of the cementPastes

GCSGBX_2019_v19n2_113_t0004.png 이미지

References

  1. Yoon DK, Choi JB, Kim YJ, Baik SH. The quantitative characterization of the dispersion sate of single-walled carbon nanotubes. Transactions of the Korea Society of Mechanical Engineers A. 2007 Apr;31(4):483-9. https://doi.org/10.3795/KSME-A.2007.31.4.483
  2. Kang ST, Park SH. Experimental study on improving compressive strength of MWVNT reinforced cementitious composites. Journal of the Korea Concrete Institute. 2014 Feb;26(1):63-70. https://doi.org/10.4334/JKCI.2014.26.1.063
  3. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991 Nov;354(7):56-8. https://doi.org/10.1038/354056a0
  4. Iijima S. Carbon nanotubes:Past, present, and future. Physica B. Condensed Matter. 2002 Oct;323(1-4):1-5. https://doi.org/10.1016/S0921-4526(02)00869-4
  5. Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH. Super-tough carbon-nanotube fibres - These extraordinary composite fibres can be woven into electronic textiles. Nature. 2003 Jun;423 (6941):703. https://doi.org/10.1038/423703a
  6. Coleman JN, Khan U, Blau WJ, Gun'ko UK. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon. 2006 Aug;44(9):1624-52. https://doi.org/10.1016/j.carbon.2006.02.038
  7. Fagan JA, Bauer BJ, Hobbie EK, Becker ML, Hight- Walker AR, Simpson JR, Chun J, Obrzut J, Bajpai V, Phelan FR, Simien D, Huh JY, Migler KB. Carbon Nanotubes: Measuring dispersion and length. Advanced Materials. 2011 Jan;23(3):338-48. https://doi.org/10.1002/adma.201001756
  8. Fagan JA, Becker ML, Chun J, Nie P, Bauer BJ, Simpson JR, Hight-Walker A, Hobbie EK. Centrifugal length separation of carbon nanotubes. Langmuir. 2008 Nov;24(24):13880-9. https://doi.org/10.1021/la801388a
  9. Kang ST, Park SH. Experimental study on improving compressive strength of mwcnt reinforced cementitious composites. Journal of the Korea Concrete Institute. 2014 Feb; 26(1):63-70. https://doi.org/10.4334/JKCI.2014.26.1.063
  10. Konsta-Gdoutos MS, Metaxa ZS, Shah SP. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement and Concrete Composites. 2010 Feb; 32(2):110-5. https://doi.org/10.1016/j.cemconcomp.2009.10.007
  11. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez- Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE. Fullerene pipes. Science. 1998 May;280(5367):1253-6. https://doi.org/10.1126/science.280.5367.1253
  12. Konsta-Gdoutos MS, Metaxa ZS, Shah SP. Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research. 2010 Jul;40(7):1052-9. https://doi.org/10.1016/j.cemconres.2010.02.015
  13. Swierczewska M, Rusakova I, Sitharaman B. Gadolinium and europium catalyzed growth of single-walled carbon nanotubes. Carbon. 2009 Nov;47(13):3139-42. https://doi.org/10.1016/j.carbon.2009.07.021
  14. McAllister P, Wolf EE. Ni-catalyzed carbon infiltration of carbon –fiber substrates. Carbon. 1992 Apr;30(2):189-200. https://doi.org/10.1016/0008-6223(92)90079-C
  15. Senff L, Labrincha JA, Ferreira VM, Hotza D, Repette WL. Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Construction and Building Materials. 2009 July;23(7):2487-91. https://doi.org/10.1016/j.conbuildmat.2009.02.005
  16. Senff L, Hotza D, Lucas S, Ferreira VM, Labrincha JA. Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Materials Science and Engineering: A. 2012 Jan;532:354-61. https://doi.org/10.1016/j.msea.2011.10.102
  17. Kawashima S, Hou P, Corr DJ, Shah SP. Modification of cement-based materials with nanoparticles. Cement and Concrete Composit. 2013 Feb;36:8-15. https://doi.org/10.1016/j.cemconcomp.2012.06.012
  18. Collins F, Lambert J, Duan WH. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC mixtures. Cement and Concrete Composites. 2012 Feb;34(2):201-7. https://doi.org/10.1016/j.cemconcomp.2011.09.013
  19. Chuah S,Pan Z, Sanjayan JG, Wangcm, Duan WH. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building Materials. 2014 Dec;73:113-24. https://doi.org/10.1016/j.conbuildmat.2014.09.040