DOI QR코드

DOI QR Code

Syngas/Diesel Dual Fuel Combustion in a Compression Ignition Engine with Different Composition Ratios of Syngas and Compression Ratios

합성가스/디젤 혼소압축착화 엔진의 합성가스 혼합비와 압축비에 따른 연소 및 배출가스 특성

  • 이준순 (과학기술연합대학원대학교 환경에너지기계공학) ;
  • 정탄 (과학기술연합대학원대학교 환경에너지기계공학) ;
  • 이용규 (과학기술연합대학원대학교 환경에너지기계공학) ;
  • 김창업 (한국기계연구원 그린동력연구실) ;
  • 오승묵 (한국기계연구원 그린동력연구실)
  • Received : 2019.03.02
  • Accepted : 2019.03.26
  • Published : 2019.03.30

Abstract

Syngas is widely produced by incomplete combustion of coal, water vapor, and air (oxygen) in a high-temperature/high-pressure gasifier through a coal-gasification process for power generation. In this study, a simulation syngas which was mainly composed of $H_2$, CO, $CO_2$, and $N_2$ was fueled with diesel. A modified single cylinder compression ignition (CI) engine is equipped with intake port syngas supply system and mechanical diesel direct injection system for dual fuel combustion. Combustion and emission characteristics of the engine were investigated by applying various syngas composition ratios and compression ratios. Diesel fuel injection timing was optimized to increase indicated thermal efficiency (ITE) at the engine speed 1,800 rpm and part load net indicated mean effective pressure ($IMEP_{net}$) 2 to 5 bar. ITE of the engine increased with the $H_2$ concentration, compression ratio and engine load. With 45% of $H_2$ concentration, compression ratio 17.1 and $IMEP_{net}$ 5 bar, ITE of 41.5% was achieved, which is equivalent to that of only diesel fuel operation.

Keywords

OMHHBZ_2019_v24n1_35_f0001.png 이미지

Fig. 1 Schematic diagram of experimental engine setup

OMHHBZ_2019_v24n1_35_f0002.png 이미지

Table 4 Piston design specification

OMHHBZ_2019_v24n1_35_f0003.png 이미지

Fig. 2 ITE of syngas and diesel depending on diesel injection timing at IMEPnet 3 bar

OMHHBZ_2019_v24n1_35_f0004.png 이미지

Fig. 3 ITE of syngas and diesel depending on diesel injection timing at IMEPnet 5 bar

OMHHBZ_2019_v24n1_35_f0005.png 이미지

Fig. 4 Coefficient of variation in IMEPnet

OMHHBZ_2019_v24n1_35_f0006.png 이미지

Fig. 5 Lambda of syngas and diesel at IMEPnet 2 to 5 bar

OMHHBZ_2019_v24n1_35_f0007.png 이미지

Fig. 6 Indicated thermal efficiency of syngas and diesel at IMEPnet 2 to 5 bar

OMHHBZ_2019_v24n1_35_f0008.png 이미지

Fig. 7 Pumping mean effective pressure of syngas and diesel at IMEPnet 2 to 5 bar

OMHHBZ_2019_v24n1_35_f0009.png 이미지

Fig. 8 Ignition delay and main combustion duration of syngas and diesel at IMEPnet 2 to 5 bar

OMHHBZ_2019_v24n1_35_f0010.png 이미지

Fig. 9 Indicated specific hydrocarbon of syngas and diesel at IMEPnet 2 to 5 bar

OMHHBZ_2019_v24n1_35_f0011.png 이미지

Fig. 10 Indicated specific carbon monoxide of syngas and diesel at IMEPnet 2 to 5 bar

OMHHBZ_2019_v24n1_35_f0012.png 이미지

Fig. 11 Indicated specific nitrogen oxides of syngas and diesel at IMEPnet 2 to 5 bar

OMHHBZ_2019_v24n1_35_f0013.png 이미지

Fig. 12 Smoke opacity of syngas and diesel at IMEPnet 2 to 5 bar

OMHHBZ_2019_v24n1_35_f0014.png 이미지

Fig. 13 Substitution rate at IMEPnet 2 to 5 bar

Table 1 Experimental engine specification

OMHHBZ_2019_v24n1_35_t0001.png 이미지

Table 2 AC Dynamometer specification

OMHHBZ_2019_v24n1_35_t0002.png 이미지

Table 3 Composition ratios of simulation syngas

OMHHBZ_2019_v24n1_35_t0003.png 이미지

References

  1. Kokjohn, S. L., Hanson, R. M., Splitter, D. A., and Reitz, R. D. "Experiments and modeling of dual-fuel HCCI and PCCI combustion using in-cylinder fuel blending", SAE International Journal of Engines, Vol 2(2), 2010, pp. 24-39. https://doi.org/10.4271/2009-01-2647
  2. Sahoo, B. B., N. Sahoo, and U. K. Saha, "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines-A critical review", Renewable and Sustainable Energy Reviews Vol. 13, Nos. 6-7, 2009, pp. 1151-1184. https://doi.org/10.1016/j.rser.2008.08.003
  3. John B. Heywood, "Internal Combustion Engine Fundamentals", 1988.
  4. Cheenkachorn, Kraipat, Chedthawut Poompipatpong and Choi Gyeung Ho, "Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas)", Energy, Vol. 53, 2013, pp. 52-57. https://doi.org/10.1016/j.energy.2013.02.027
  5. J. Liu, F. Yang, H. Wang, M. Ouyang and S. Hao, "Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing", Applied Energy, Vol. 110, 2013, pp. 201-206. https://doi.org/10.1016/j.apenergy.2013.03.024
  6. M. P. Poonia, A. Ramesh and R. R. Gaur, "Experimental investigation of the factors affecting the performance of a LPG-diesel dual fuel engine", SAE Technical Paper, Vol. 1, 1999.
  7. S. Ma, Z. Zheng, H. Liu, Q. Zhang, M. Yao, "Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion", Applied Energy, Vol. 109, 2013, pp. 202-212. https://doi.org/10.1016/j.apenergy.2013.04.012
  8. A. W. Grupping, "Coal gasification method", U.S. Patent, 1981.
  9. 라호원, 이시훈, 윤상준, 최영찬, 김재호, 이재구, "분류층 습식 석탄가스화 기술", Korea Chemical Engineering Research, Vol. 48, No. 2, 2010, pp. 129-139.
  10. 이 찬, 조상목, 유영돈, 윤용승, "석탄 가스화 합성가스를 이용한 가스 엔진의 연소 특성 해석", 한국에너지공학회 추계학술발표회논문집, 2005, pp. 143-148.
  11. Ryu, K. H., Park, J. C., and Choi, K. H. "Performance and Emission Characteristics of Dual-fuel (Diesel-CNG) Combustion in a Diesel Engine", Transactions of the Korean Society of Automotive Engineers, Vol. 18, No. 4, 2010, pp. 132-139.