DOI QR코드

DOI QR Code

넓은이랑 줄뿌림 파종 시 재식밀도에 따른 기장의 생육 및 수량

Effects of Planting Density on Growth and Yield in Wide-Row Drill Seeding of Proso millet (Panicum miliaceum L.)

  • 정기열 (국립식량과학원 남부작물부 생산기술개발과) ;
  • 최영대 (국립식량과학원 남부작물부 생산기술개발과) ;
  • 전현정 (국립식량과학원 남부작물부 생산기술개발과) ;
  • 이상훈 (국립식량과학원 남부작물부 생산기술개발과) ;
  • 전승호 (순천대학교 생명산업과학대학 웰빙자원학과)
  • Jung, Ki-Youl (Department of Southern Area Crop Science, NICS, RDA) ;
  • Choi, Young-Dae (Department of Southern Area Crop Science, NICS, RDA) ;
  • Chun, Hyen-Chung (Department of Southern Area Crop Science, NICS, RDA) ;
  • Lee, Sang-Hun (Department of Southern Area Crop Science, NICS, RDA) ;
  • Jeon, Seung-Ho (Department of Well-being Resources, College of Life Science and Natural Resources, Sunchon National University)
  • 투고 : 2019.01.06
  • 심사 : 2019.02.25
  • 발행 : 2019.03.31

초록

본 연구는 건강 기능성 기장에 대한 소비자의 선호도가 높아지면서 수요와 재배면적이 점차 확대되고 있는 기장의 생산량 증대와 자급률 향상을 위한 체계적인 안전생산 생력 재배기술을 확립하기 위한 기초자료를 얻고자 기계화 수확에 적합한 넓은이랑 줄뿌림 재배시 재식밀도에 따른 생육특성 및 수량특성에 관한 연구를 수행하였다. 1. 간장은 '황금기장'은 $50{\times}3$, 5 cm 처리구, '이백찰'은 $20{\times}3cm$ 처리구에서 가장 길게 나타났으며, 간경은 재식밀도가 높아질수록 얇아지는 경향으로 나타났다. 2. 분얼수와 이삭장은 같은 경향으로 재식밀도가 낮아질수록 많거나 길어지는 경향으로 재식밀도가 가장 낮은 $50{\times}15cm$ 처리구에서 가장 많거나 길게 조사되었다. 3. 개체당 종실수는 재식밀도가 낮아질수록 증가하였으며, 천립중은 재식밀도간 유의성은 나타나지 않았다. 4. 10a당 수량 변화에서는 '황금기장'은 $50{\times}3cm$ 처리구에서 $314.9kg{\cdot}10a^{-1}$, '이백찰'은 $50{\times}5$, 10 cm 처리구에서 $358{\sim}356kg{\cdot}10a^{-1}$으로 가장 높은 수량이 나타났다.

The goal of this study was to investigate how the characteristics of growth and yield are affected by various planting densities in wide-row drill seeding cultivation suitable for mechanized harvesting. Two cultivars ('Hwanggeum' and 'Leebackchal') of proso millet (Panicum miliaceum L.) were planted at varying planting densities [row spacing (20, 30, and 50 cm) and plant spacing (3, 5, 10, and 15 cm)]. The culm length was highest at the planting density of $50{\times}3cm$ and $50{\times}5cm$ for 'Hwanggeum' and $20{\times}3cm$ for 'Leebackchal'. The culm diameter became thinner as the planting density increased. The number of tillering and panicle length showed the same tendency to increase in quantity or length as planting density decreased and was highest at $50{\times}15cm$ when the planting density was lowest. The number of seeds per individual increased as planting density decreased. The thousand grain weight showed no significant differences among treatment plots. The greatest yield of 'Hwanggeum' was obtained at a planting density of $50{\times}3cm$ ($314.9kg{\cdot}10a^{-1}$) and that of 'Leebackchal' was obtained at $50{\times}3cm$ and $50{\times}5cm$ ($358-356kg{\cdot}10a^{-1}$).

키워드

JMHHBK_2019_v64n1_33_f0001.png 이미지

Fig. 1. Effect of planting density on yield (kg·10 a-1) of proso millet. A, Hwanggeum; B, Leebackchal. Bars with different letters within the same cutting time were significantly different by Duncan’s multiple range test (DMRT), p < 0.05.

Table 1. Chemical properties of soil before the experiment.

JMHHBK_2019_v64n1_33_t0001.png 이미지

Table 2. Effects of planting density of proso millet on the growth characteristics of seedings after 50 days.

JMHHBK_2019_v64n1_33_t0002.png 이미지

Table 3. Effects of planting density on growth characteristics at the harvesting stage of proso millet.

JMHHBK_2019_v64n1_33_t0003.png 이미지

Table 4. Effects of planting density on yield components at the harvesting stage of proso millet.

JMHHBK_2019_v64n1_33_t0004.png 이미지

Table 5. Analysis of variance by planting density in wide-row drill seeding of proso millet.

JMHHBK_2019_v64n1_33_t0005.png 이미지

참고문헌

  1. Agdag, M., L. Nelson, D. Baltensperger, D. Lyon and S. Kachman. 2001. Row spacing affects grain yield and other agronomic character of proso millet. Comun Soil Sci. Plant Analysis. 32 : 2021-2032. https://doi.org/10.1081/CSS-120000266
  2. Balishter, V. K. Gupta, and R. Singh. 1991. Impact of mechanisation on employment and farm productivity. Productivity. 32(3) : 484-489.
  3. Cho, N. K., C. K. Song, I. S. Kim, Y. I. Cho, and E. K. Oh. 2001. Effect of number of plants per hill on the major characters, forage yield and chemical composition of Jeju Italian millet. J. Anim. Sci. Technol. 43(6) : 967-972.
  4. Cho, N. K., Y. K. Kang, C. K. Song, Y. C. Jeun, J. S. Oh, Y. I. Cho, and S. J. Park. 2004. Effects of planting density on growth, forage yield and chemical composition of jeju native sorghum(Sorghum bicolor L.). J. Korean Grass Sci. 24(3) : 225-230. https://doi.org/10.5333/KGFS.2004.24.3.225
  5. Edwards, R., and S. Charter. 1986. Traditional Farming Systems and Farming Systems Respaniclech. p. 69-94. In: Dryland Farming in Africa. Mcmillan Press Ltd. London Basingstoke, CTA, The Netherlands.
  6. Ha, Y. D., and S. P. Lee. 2001. Characteristic of proteins in Italian millet, sorghum and common millet. Korean J. Postharvest Sci. Technol. 8 : 182-192.
  7. Jeon, S. H., B. J. Lee, H. S. Chun and Y. S. Cho. 2014. Effects of mulching and planting densities on growth and yield of foxtail millet (Setaria italica Beauvois). Korean J. Crop Sci. 59 : 162-166. https://doi.org/10.7740/kjcs.2014.59.2.162
  8. Jung, K. Y., S. M. Jo, H. W. Kang, Y. S. Cho, D. K. Yoon and S. H. Jeon. 2015. Effects of polyethylene film mulching and planting densities on growth and yield of proso millet (Panicum miliaceum L.). Korean J. Crop Sci. 60 : 212-216. https://doi.org/10.7740/kjcs.2015.60.2.212
  9. Jung, K. Y., S. K. Park, H. W. Kang, Y. S. Cho, and S. H. Jeon. 2016. Effects of plant number per hill on growth and yield of high ridge hill-seeded foxtail millet (Setaria italica L.). Korean J. Crop Sci. 61 : 119-123. https://doi.org/10.7740/kjcs.2016.61.2.119
  10. Jung, K. Y., Y. D. Choi, Y. S. Cho, and S. H. Jeon. 2017. Effects of seeding rate and depth during broadcast sowing on growth and yield of foxtail millet (Setaria italica L.) and proso millet (Panicum miliaceum L.). Korean J. Crop Sci. 62 : 361-366. https://doi.org/10.7740/KJCS.2017.62.4.361
  11. Lee, S. S. and C. H. Kim. 2008. Effects of planting density on growth and yield of vegetable soybean varieties. Korean J. Crop Sci. 53 : 64-69.
  12. MIFAFF. 2009. Statistical Yearbook of Agriculture, Forestry and Fisheries.
  13. MIFAFF. 2010. Statistical Yearbook of Agriculture, Forestry and Fisheries.
  14. Modarres, A. M., R. I. Hamilton, M. Dijak, L. M. Dwyer. D. W. stewart, D. E. Mather, and D. L. Smith. 1998. Plant population density effects on maze inbred line grown in short-season environments Crop Sci. 38 : 104-108. https://doi.org/10.2135/cropsci1998.0011183X003800010018x
  15. NCAER (National Council of Applied Economic Research). 1980. Implications of tractorization on employment, productivity and income. New Delhi, India.
  16. Park, H. J., W. Y. Han, K. W. Oh, J. M. Ko, J. W. Bae, Y. W. Jang, I. Y. Baek and H. W. Kang. 2015. Growth and yield responses of soybean to planting density in late planting. Korean J. Crop Sci. 60 : 343-348. https://doi.org/10.7740/kjcs.2015.60.3.343
  17. Park, H. S., Ko, M. S., Kim, J. T., Oh, K. W. and Pae, S. B. 1999. Agronomic characteristics of common millet (Panicum miliaceum L.) varieties. Korean J. Breed. 31(4) : 428-433.
  18. Park, K. Y., Y. K. Kang, S. U. Park, and H. G. Moon. 1989. Effects of planting density and tiller removal on growth and yield of sweet corn hybrids. Korean J. Crop Sci. 34 : 192-197.
  19. Peacock, J. M. 1982. Response and Tolerance of Sorghum to temperature stress. In: Sorghum in the eighties, Proceedings of the international symposium on Sorghum ICRISAT, 2-7 Nov. 1981. Patancheru, A.P. India. ICRISAT.
  20. Roxburgh, W. 1932. Flora India or description of Indian plants. 2 : 96-105.
  21. Sung, M. H., and D. H. Kwon. 2011. The survey and analyze of circulation realities on Koeran minor cereal crops. Korea Rural Economic Institute. 145p. (In Korean)
  22. Yoon, S. T., T. K. Han, I. H. Jeong, Y. J. Kim, J. B. Yul, Y. Jing, M. H. Ye, K. S. Han, S. W. Beak, S. I. Kim, M. C. Lee and K. W. Kim. 2016. Effects of planting density and Seeding date on the tiller aspect and growth characteristics of proso millet (Panicum miliaceum L.). Korean J. Plant Res. 29 : 511-518. https://doi.org/10.7732/kjpr.2016.29.4.511