DOI QR코드

DOI QR Code

재식밀도가 '초롱' 단수수의 생육 및 수량구성요소에 미치는 영향

Effect of Planting Density on Growth and Yield Components of the Sweet Sorghum Cultivar, 'Chorong'

  • 최영민 (전라북도농업기술원 작물식품과) ;
  • 한현아 (전라북도농업기술원 작물식품과) ;
  • 신소희 (전라북도농업기술원 작물식품과) ;
  • 허병수 (전라북도농업기술원 작물식품과) ;
  • 최규환 (전라북도농업기술원 작물식품과) ;
  • 권석주 (전라북도농업기술원 작물식품과)
  • Choi, Young Min (Crops & Food Division, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Han, Hyun-Ah (Crops & Food Division, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Shin, So-Hee (Crops & Food Division, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Heo, Byong Soo (Crops & Food Division, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Choi, Kyu-Hwan (Crops & Food Division, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Kwon, Suk-Ju (Crops & Food Division, Jeollabuk-do Agricultural Research and Extension Services)
  • 투고 : 2019.02.22
  • 심사 : 2019.03.08
  • 발행 : 2019.03.31

초록

본 연구는 단수수 '초롱'(Sorghum bicolor (L.) Moench)의 재식밀도(16.7, 11.1, 8.3, 6.7, 5.6주${\cdot}m^{-2}$)에 따른 생육, 착즙액의 수량 및 품질을 비교하고 적정 재식밀도와 다변량 분석을 통해 수량에 관계된 요인을 분석하고자 수행하였다. 재식밀도에 따라 파종 후 일수별 주경장은 처리간 차이가 없었으나 재식밀도가 높아짐에 따라 경태는 얇아지고 분지의 퇴화가 빨라지는 경향을 보였다. 수확기 추정한 착즙액과 당수량은 재식밀도가 높은 16.7 (각각 42.9, $4.16Mg{\cdot}ha^{-1}$), 11.1 (37.1, $3.73Mg{\cdot}ha^{-1}$)주${\cdot}m^{-2}$ 처리구가 8.3(30.5, $2.96Mg{\cdot}ha^{-1}$), 6.7 (26.6, $2.41Mg{\cdot}ha^{-1}$), 5.6 (24.7, $2.22Mg{\cdot}ha^{-1}$)주${\cdot}m^{-2}$ 처리구보다 많았다. 가용성 고형물 및 유리당 함량은 통계적인 차이는 없었으나 11.1, 8.3주${\cdot}m^{-2}$ 처리구에서 높은 편이었다. 반면 재식밀도가 5.6~11.1주${\cdot}m^{-2}$까지 증가했을 때 도복지수(9에 가까울수록 도복피해가 커짐)가 2.00~6.33까지 급격히 증가하여 최종 재식밀도의 결정시 태풍의 도래 횟수나 지형적인 특성 등을 고려해야 할 것이다. 추가적으로 조사항목간 상관분석과 주성분 분석에서 재식밀도는 생경수량($r=0.62^{**}$), 건물수량($r=0.58^{**}$), 착즙액($r=0.63^{**}$) 및 당수량($r=0.66^{**}$)과는 정의관계를, 주경의 굵기($r=-0.65^{**}$)와는 부의관계를 나타내었다. 또한 수량 관련 요인들은 초장, 경태, 마디수와 통계적 관계가 없었다.

This study was conducted to investigate the effect of planting density on plant growth, yield, and quality in the sweet sorghum cultivar 'Chorong' (Sorghum bicolor (L.) Moench). Plants were cultivated at densities of 16.7, 11.1, 8.3, 6.7, and $5.6plants{\cdot}m^{-2}$. Factors related to yield and yield components were analyzed using correlation and multivariate analyses. There was no significant difference among plant densities in stem length from 20 to 110 days after sowing. But the stem diameter was thin, and a decrease in number of tillers occurred more rapidly as planting density increased. At harvest, juice and sugar yield were higher at densities of 16.7 (42.9, $4.16Mg{\cdot}ha^{-1}$, respectively) and 11.1 (37.1, $3.73Mg{\cdot}ha^{-1}$) $plants{\cdot}m^{-2}$ than at 8.3 (30.5, $2.96Mg{\cdot}ha^{-1}$), 6.7 (26.6, $2.41Mg{\cdot}ha^{-1}$), and 5.6 (24.7, $2.22Mg{\cdot}ha^{-1}$) $plants{\cdot}m^{-2}$. The soluble solids and total sugar contents were not different among treatments, but relatively high values were observed at the density of 11.1 and $8.3plants{\cdot}m^{-2}$. As plant density was increased from 5.6 to $11.1plants{\cdot}m^{-2}$, the lodging index (1 = no, 9 = lodging) increased rapidly from 2.00 to 6.33. To determine the optimal planting density, the number of typhoons and topographical characteristics should be considered. Correlation and principal components analyses revealed that plant density exhibited a positive relationship with fresh stem yield ($r=0.62^{**}$), dry stem yield ($r=0.58^{**}$), juice ($r=0.63^{**}$), and sugar yield ($r=0.66^{**}$), but a negative with stem diameter ($r=-0.65^{**}$). The yield factors were not statistically related to stem height, diameter, and number of nodes.

키워드

JMHHBK_2019_v64n1_40_f0001.png 이미지

Fig. 1. Influence of planting density on the seasonal patterns of stem length (A), diameter (B), and number of additional tillers (C) of the sweet sorghum cultivar ‘Chorong’ in 2018. Vertical bars represent standard error of the means (n = 15). Legend in the graph indicates planting density (PD) and the unit is number of plants per square meter. The dotted line represents heading date (71 days after sowing).

JMHHBK_2019_v64n1_40_f0002.png 이미지

Fig. 2. Correlation between plant density and lodging index at 30 days after heading date of the sweet sorghum cultivar ‘Chorong’. Lodging index is the indexed value of percentage.

JMHHBK_2019_v64n1_40_f0003.png 이미지

Fig. 3. Scatter plot matrix and Pearson’s coefficient between growth and yield characteristics surveyed at harvest period of the sweet sorghum cultivar ‘Chorong’. Plant density (PD), stem length (SL), stem diameter (SD), number of nodes (Node), soluble solids content (SSC), moisture contents of stem (MCS), dry matter (DM), fresh stem yield (FSY), dry stem yield (DSY), conservative sugar yield (CSY), juice yield (JY), sugar yield (SY). **P ≤ 0.01, *P ≤ 0.05 represent significant values (n=75).

JMHHBK_2019_v64n1_40_f0004.png 이미지

Fig. 4. Scatter plot of growth and yield characteristics from principal components analysis at harvest period of the sweet sorghum cultivar ‘Chorong’. Plant density (PD), stem length (SL), stem diameter (SD), number of nodes (Node), soluble solids content (SSC), moisture contents of stem (MCS), dry matter (DM), fresh stem yield (FSY), dry stem yield (DSY), conservative sugar yield (CSY), juice yield (JY), sugar yield (SY).

Table 1. Effect of planting density on yield components at harvest (50 days after heading) of the sweet sorghum cultivar ‘Chorong’.

JMHHBK_2019_v64n1_40_t0001.png 이미지

Table 2. Effect of planting density on sugar contents in juice at harvest (50 days after heading) of the sweet sorghum cultivar ‘Chorong’.

JMHHBK_2019_v64n1_40_t0002.png 이미지

Table 3. Principal component (PC) analysis results of growth and yield characteristics of the sweet sorghum cultivar ‘Chorong’.

JMHHBK_2019_v64n1_40_t0003.png 이미지

참고문헌

  1. Ahn, S. H., S. S. Nam, J. K. Bang, C. Y. Yu, Y. H. Choi, Y. H. Moon, S. T. Bark, Y. L. Cha, B. C. Koo, and K. G. Park. 2012. Characteristics of sweet sorghum germplasms for bioethanol production. Kor. Soc. Internat. Agric. 24(1) : 32-35.
  2. Almodares, A., R. Taheri, and S. Adeli. 2008. Stalk yield and carbohydrate composition of sweet sorghum (Sorghum bicolor (L.) Moench) cultivars and lines at different growth stages. Malays. Appl. Biol. 37(1) : 31-36.
  3. Anten, N. P. R., F. Schieving, E. Medina, M. J. A. Werger, and P. Schuffelen. 1995. Optimal leaf area indices in $C_3$ and $C4_4$ mono- and dicotyledonous species at low and high nitrogen availability. Physiol. Plant 95 : 541-550. https://doi.org/10.1111/j.1399-3054.1995.tb05520.x
  4. Bian, Y., S. Yazaki, M. Inoue, and H. Caih. 2006. QTLs for sugar content of stalk in sweet sorghum (Sorghum bicolor (L.) Moench). Agric. Sci. China 5(10) : 736-744. https://doi.org/10.1016/S1671-2927(06)60118-1
  5. Bok, T. G., M. S. Lee, W. S. Shin, J. H. Ryu, and H. B. Lee. 2010. Major characters of the developed sweet sorghum lines induced by mutagene, gamma-ray. Kor. J. Agric. Sci. 37(3) : 351-354. https://doi.org/10.7744/cnujas.2010.37.3.351
  6. Carpita, N. C. and M. C. McCann. 2008. Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci. 13(8) : 415-420. https://doi.org/10.1016/j.tplants.2008.06.002
  7. Choi, Y. H., Y. H. Moon, S. H. Ahn, Y. M. Yoon, Y. L. Cha, B. C. Koo, K. G. Park, H. S. Han, and W. S. Kim. 2012. Characteristics of sweet sorghum germplasm for bioethanol production in reclaimed soil. Kor. J. Crop. Sci. 57(4) : 384-388. https://doi.org/10.7740/kjcs.2012.57.4.384
  8. Cipollini, D. F. and J. Bergelson. 2001. Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus. Journal of Chemical Ecology. 27 : 593-610. https://doi.org/10.1023/A:1010384805014
  9. Cusicanqui, J. A. and J. G. Lauer. 1999. Plant density and hybrid influence on corn forage yield and quality. Agronomy Journal 91 : 911-915. https://doi.org/10.2134/agronj1999.916911x
  10. Dai, J. L., W. J. Li, W. Tang, D. M. Zhang, Z. H. Li, H. Q. Lu, A. E. Eneji, and H. Z. Dong. 2015. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crops Research. 180 : 207-215. https://doi.org/10.1016/j.fcr.2015.06.008
  11. Dar, W. D. 2006. Sweet sorghum: A new smart biofuel crop that ensures food security. International Crops Research Institute for Semi-Arid Tropics (ICRISAT) Reports. 1-5.
  12. Dong, H. Z., W. J. Li, A. E. Eneji, and D. M. Zhang. 2012. Nitrogen rate and plan density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Res. 126 : 137-144. https://doi.org/10.1016/j.fcr.2011.10.005
  13. Fedenko, J. R., J. E. Erickson, and M. P. Singh. 2015. Rood lodging affects biomass yield and carbohydrate composition in sweet sorghum. Industrial Crops and Products. 74 : 933-938. https://doi.org/10.1016/j.indcrop.2015.06.018
  14. Gibson, S. 2009. Bioenergy crops "Sweet sorghum". Advanta Seeds Ltd. Austrilia. 1-7.
  15. Gnansounou, E., A. Daurial, and C. E. Wyman. 2005. Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresource Technol. 96 : 985-1002. https://doi.org/10.1016/j.biortech.2004.09.015
  16. Han, T. K. and S. T. Yoon. 2017. Effect of planting distance and seeding date on the tiller occurrence, growth characteristics of sorghum (Sorghum bicolor L.) resources. Kor. J. Plant Res. 30(4) : 427-434. https://doi.org/10.7732/KJPR.2017.30.4.427
  17. Hiltbrunner, J., B. Streit, and M. Liedgens. 2007. Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover?. Field Crops Res. 102 : 163-171. https://doi.org/10.1016/j.fcr.2007.03.009
  18. Lee, I., H. Y. Sin, S. O. Kim, H. K. Park, and O. D. Kwon. 2004. Growth and yield of paddy rice as affected seeding method and planting density under the upland condition. Kor. J. Intl. Agri. 16(3) : 214-221 (in Korean).
  19. Leskovsek, R., A. Datta, A. Simoncic, and S. Z. Knezevic. 2012. Influence of nitrogen and plant density on the growth and seed production of common ragweed (Ambrosia artemisiifolia L.). J. Pest Sci. 85 : 527-539. https://doi.org/10.1007/s10340-012-0433-2
  20. Martin, P. M. and F. M. Kelleher. 1984. Effects of row spacing and plant population on sweet sorghum yield. Austral. J. Exp. Agric. 24(126) : 386-390. https://doi.org/10.1071/EA9840386
  21. Naoyuki, T. and Y. Goto. 2004. Cultivation of sweet sorghum (Sorghum bicolor (L.) Moench) and determination of its harvest time to make use as the raw material for fermentation, practiced during rainy season in dry land of Indonesia. Plant Prod. Sci. 7 : 442-448. https://doi.org/10.1626/pps.7.442
  22. RDA, 2016. Standard farming handbook. 'SORGHUM'. Rural Development Administration, Jeonju, Korea.
  23. Savallios, A., W. Vermerris, L. Rivera, and G. Ejeta. 2008. Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenergy Res. 1 : 193-204. https://doi.org/10.1007/s12155-008-9025-7
  24. Shukla, S., T. J. Felderhoff, A. Saballos, and W. Vermerris. 2017. The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crops Res. 203 : 181-191. https://doi.org/10.1016/j.fcr.2016.12.004
  25. Tang, C. C., C. D. Sun, F. Du, F. Chen, A. Ameen, T. C. Fu, and G. H. Xie. 2018. Effect of plant density on sweet and biomass sorghum production on semiarid marginal land. Sugar Tech. 20(3) : 312-322. https://doi.org/10.1007/s12355-017-0553-3
  26. Tsuchihashi, N. and Y. Goto. 2008. Year-round cultivation of sweet sorghum (Sorghum bicolor (L.) Moench) through a combination of seed and ratoon cropping in Indonesian Savanna. Plant Prod. Sci. 11(3) : 377-384. https://doi.org/10.1626/pps.11.377
  27. Turgut, I., U. Bilgili, A. Duman, and E. Acikgoz. 2005. Production of sweet sorghum (Sorghum bicolor (L.) Moench) increases with increased plant densities and nitrogen fertilizer levels. Acta Agric. Scandinavica Section B-Soil and Plant 55(3) : 236-240.
  28. Wang, R., T. Cheng, and L. Y. Hu. 2015. Effect of wide-narrow row arrangement and plant density on yield and radiation use efficiency of mechanized direct-seeded canola in Central China. Field Crops Res. 172 : 42-52. https://doi.org/10.1016/j.fcr.2014.12.005
  29. Wortmann, C. S., A. J. Liska, R. B. Ferguson, D. J. Lyon, R. N. Klein, and I. Dewikat. 2010. Dryland performance of sweet sorghum and grain crops for biofuel in Nebraska. Agronomy J. 102(1) : 319-326. https://doi.org/10.2134/agronj2009.0271
  30. Yang, G. Z., X. J. Luo, Y. C. Nie, and X. L. Zhang. 2014. Effects of plant density on yield and canopy micro environment in hybrid cotton. J. Integrative Agric. 13 : 2154-2163. https://doi.org/10.1016/S2095-3119(13)60727-3
  31. Yao, H. S., Y. L. Zhang, X. P. Yi, Y. Y. Hu, H. H. Luo, L. Gou, and W. F. Zhang. 2015. Plant density alters nitrogen partitioning among photosynthetic components, leaf photosynthetic capacity and photosynthetic nitrogen use efficiency in field-grown cotton. Field Crops Res. 184 : 39-49. https://doi.org/10.1016/j.fcr.2015.09.005
  32. Yoshida, S. 1973. Effects of temperature on growth of the rice plant (Oryza sativa L.) in a controlled environment. Soil Sci. Plant Nutr. 19(4) : 299-310. https://doi.org/10.1080/00380768.1973.10432599