DOI QR코드

DOI QR Code

물리적 요인이 콩 발아 중 isoflavone 함량에 미치는 영향

Influence of Abiotic Treatments on Isoflavone Accumulation in Soybean Seeds during Germination

  • 조민식 (순천향대학교 의료생명공학과) ;
  • 이주희 (순천향대학교 의료생명공학과) ;
  • 마무현 (순천향대학교 의료생명공학과) ;
  • 김서영 (순천향대학교 의료생명공학과) ;
  • 변채림 (순천향대학교 의료생명공학과) ;
  • 이유정 (순천향대학교 의료생명공학과) ;
  • 이주원 (순천향대학교 의료생명공학과) ;
  • 최도진 (순천향대학교 의료생명공학과) ;
  • 김홍식 (국립식량과학원 남부작물부) ;
  • 김용호 (순천향대학교 의료생명공학과)
  • Jo, Min-Sik (Dept. of Biotechnology, SoonChunHyang Univ.) ;
  • Lee, Ju-Hee (Dept. of Biotechnology, SoonChunHyang Univ.) ;
  • Ma, Mu-Hyun (Dept. of Biotechnology, SoonChunHyang Univ.) ;
  • Kim, Seo-Young (Dept. of Biotechnology, SoonChunHyang Univ.) ;
  • Byun, Chea-Rim (Dept. of Biotechnology, SoonChunHyang Univ.) ;
  • Yi, Yoo-Jung (Dept. of Biotechnology, SoonChunHyang Univ.) ;
  • Lee, Ju-Won (Dept. of Biotechnology, SoonChunHyang Univ.) ;
  • Choi, Do-Jin (Dept. of Biotechnology, SoonChunHyang Univ.) ;
  • Kim, Hong-Sik (Dept. of Southern Area Crop Science, NICS, RDA) ;
  • Kim, Yong-Ho (Dept. of Biotechnology, SoonChunHyang Univ.)
  • 투고 : 2019.03.11
  • 심사 : 2019.03.21
  • 발행 : 2019.03.31

초록

콩 발아기간 중 몇 가지 물리적 요인(열 처리, 수분공급 제한, 조명 처리, 초음파 처리)이 이소플라본 함량 증대에 미치는 영향에 대하여 알아보았다. 1. 대조군과 함께 4가지 처리는 모두 발아시간이 경과함에 따라 이소플라본 함량이 높아졌다. 2. 초음파 처리가 이소플라본 함량 증대에 가장 큰 효과가 있었으며, 발아기간 중 조명 처리도 유의성이 인정되었다. 3. 열처리도 이소플라본 함량 증대에 유의적인 효과가 있었으나 발아기간 중 부패립이 많이 발생하는 문제가 있었으며, 수분제한은 대조군에 비해 이소플라본 함량이 떨어지는 경향이었다. 4. 이소플라본 종류별 함량을 분석한 결과 malonyl-glucoside가 대체로 총 이소플라본 함량의 85% 이상을 차지하였고 다음으로는 glucoside > aglycone > acetyl-glucoside 순서로 함량이 높았으며, 발아가 진행되면서 aglycone 함량이 증가하는 경향이었다. 이와 같은 결과를 볼 때 발아기간 중 외부의 물리적 요인 처리가 콩 종자의 이소플라본 함량을 증대시킴을 확인할 수 있었다.

Isoflavones, a group of secondary metabolites present in plants and especially abundant in soybeans, are garnering increasing interest because of their medicinal properties. Numerous environmental factors influence isoflavone accumulation in plants. Successful attempts to increase isoflavone contents in soybean seeds have not been widely reported. In this report, we examined an effective method for producing a high amount of isoflavones during soybean seed germination, by treating the seed with 4 abiotic factors. Soybean seeds were exposed to ultrasound (50 Hz) and heat ($40^{\circ}C$) for 30minutes, then germinated for 5 days in darkness. Another sample was subjected to water deficit during germination in darkness, and the other sample was subjected to light conditions during the germination period. The results showed that the ultrasound treatment increased isoflavone content during soybean germination. Three days after germination, the ultrasound-treated seeds presented the highest isoflavone content (6,042.1 ug/g dry weight) compared to the other treatments, which was also 1.3-fold increases over the content of the raw seed's before germination. With respect to each type of isoflavone group, aglycone (partially genistein) content was markedly higher, whereas glucoside was lower than that of the untreated samples. In other experiment, total isoflavone content after heat, water deficit, and light treatments was 5,600.0, 4,740.1, and 5,631.4 ug/g, respectively. These present work suggests that ultrasound treatment is a novel approach for improving the production of isoflavones in soybean seeds during germination.

키워드

JMHHBK_2019_v64n1_18_f0001.png 이미지

Fig. 1. Total isoflavone content after 5 days germination in the hypocotyl of seedlings subjected to abiotic treatments.

Table 1. Total isoflavone content of soybean seeds subjected to abiotic treatment during the 5 germination periods

JMHHBK_2019_v64n1_18_t0001.png 이미지

Table 2. Total isoflavone content of soybean seeds subjected to abiotic treatments, arranged by cultivars and germination periods.

JMHHBK_2019_v64n1_18_t0002.png 이미지

Table 3. Content of each type of isoflavone group during germination of soybean seeds subjected to abiotic treatments.

JMHHBK_2019_v64n1_18_t0003.png 이미지

Table 4. Content of each isoflavone type according to soybean cultivar and germination period.

JMHHBK_2019_v64n1_18_t0004.png 이미지

참고문헌

  1. Ahmad, M. Z., P. Li, J. Wang, N. U. Rehman, and J. Zhao. 2017. Isoflavone malonyltransferases GmlMaT1 and GmlMaT3 differently modify isoflavone glucosides in soybean under various stresses. Front. Plant Sci. 8 : 735. doi:10.3389/fpls.2017.00735.
  2. Bennett, J. O., O. Yu, L. G. Heatherly, and H. B. Krisknan. 2004. Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation. J. Ahric. Food Chem. 52 : 7574-7579. https://doi.org/10.1021/jf049133k
  3. Berger, M., C. A. Rasolohery, R. Cazalis, and J. Dayde. 2008. Isoflavone accumulation kinetics in soybean seed cotyledons and hypocotyls: distinct pathways and genetic controls. Crop Sci. 48 : 700-708. https://doi.org/10.2135/cropsci2007.08.0431
  4. Chung, W. K. 1998. Physicochemical and sensory characteristics of soybean sprouts in relation to spybean cultivars and culture period. Ph.D thesis of Seoul Natl. Univ.
  5. Dhauhadel, S., B. D. McGarvey, R. Williams, and M. Gijzen. 2003. Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mil. Biol. 53 : 733-743. https://doi.org/10.1023/B:PLAN.0000023666.30358.ae
  6. Dhayakaran, R. P. A., S. Neethirajans, J. Xue, and J. Shi. 2015. Characterization of antimicrobial efficacy of soy isoflavones against pathogenic biofilms. LWT food Sci. Technol. 63 : 859-865. https://doi.org/10.1016/j.lwt.2015.04.053
  7. Gutierrez-Gonzalez, J. J., S. K. Guttikonda, L. P. Tran, D. L. Aldrich, R. Zhong, O. Yu, H. T. Nguyen, and D. A. Sleper. 2010. Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant and Cell Physiology. 51(6) : 936-948. https://doi.org/10.1093/pcp/pcq065
  8. Gutierrez-Gonzalez, J.J., X. Wu, J. Zhang, D. Lee, M. Ellersieck, L.G. Shannon, et al. 2009. Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theor. Appl. Genet. 119:1069-1083. https://doi.org/10.1007/s00122-009-1109-z
  9. Jeon, S. H., K. A. Lee, and K. E. Byoun. 2005. Studies on changes of isoflavone and nutrients during germination of soybean varieties. Korean J. Human Ecology 14(3) : 485-489.
  10. Kim, J. S., J. G. Kim, and W. J. Kim, 2004. Changes in isoflavone and oligosaccharides of soybeans during Germination. Korean J. Food Sci. Technol. 36(2) : 294-298.
  11. Kim, S. R., H. D. Hong, and S. S. Kim. 1999. Some properties and contents of isoflavone in soybean and soybean foods. Korea Soybean Digest. 16(2) : 35-46.
  12. Kim, Y. H., S. D. Kim, E. H. Hong, and W. S. Ahn. 1996. Physiological function of isoflavones and their genetic and environmental variations in soybean. Korean J. Crop Sci. 41(S) : 25-45.
  13. Ko, K. P., Y. Yeo, J. H. Yoon, C. S. Kim, S. Tokudome, L. T. Ngoan, C. Koriyama, Y. K. Lim, S. H. Chang, H. R. Shin, D. Kang, S. K. Park, C. H Kang, and K. Y. Yoo. 2017. Plasma phytoestrogens concentration and risk of colorectal cancer in two different Asian populations. Clinical Nutrition http://dx.doi.org/10.1016/j.clnu.2017.07.014.
  14. Lee, E. S., H. D. Kim, J. C. Chae, and Y. H. Kim. 2008. Variation of isoflavone and saponin during maturity in black soybean. Korean J. Crop Sci. 53(1) : 34-41.
  15. Lee, J. W., Y. J. Yi, J. H. Lee, M. S. Jo, D. J. Choi, M. H. Ma, H. S. Kim, D. O. Kim, H. T. Yun, and Y. H. Kim. 2018. Quantification of isoflavone malonylglucosides in soybean seed during germination. Korean J. Crop Sci. 63(3) : 239-247. https://doi.org/10.7740/KJCS.2018.63.3.239
  16. Li, P., Q. Dong, S. Ge, X. He, J. Verdier, D. Li, and J. Zhao. 2016. Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume. Plant Biotech. J. 14 : 1604-1618. https://doi.org/10.1111/pbi.12524
  17. Manach, C., G. Williamson, C. Morand, A. Scalbert, and C. Remesy. 2005. Bioavailability and bioefficacy of polypenols in humans. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81 : 230S-242S. https://doi.org/10.1093/ajcn/81.1.230S
  18. Messina, M. 2014. Soy foods, isoflavones, and the health of postmenopausal women. Am. J. Clin. Nutr. 100:423S-430S https://doi.org/10.3945/ajcn.113.071464
  19. Nielsen, I.L., and G. Williamson. 2007. Review of the factors affecting bioavailability of soy isoflavones in humans. Nutr. Cancer 57 : 1-10. https://doi.org/10.1080/01635580701267677
  20. Shohag, M. J. I., Y. Wei, and X. Yang. 2012. Change of folate and other potential health-promoting phytochemicals in legume seeds as affected by germination. J. Agric. Food Chem. 60 : 9137-9143. https://doi.org/10.1021/jf302403t
  21. Wang, H. J., and P. A. Murpy. 1994. Isoflavone composition of American and Japanese soybeans in Iowa : Effects of variety, crop year, and location. J. Agric. Food Chem. 42 : 1674-1677. https://doi.org/10.1021/jf00044a017
  22. Yang, H., J. Gao, A. Yang, and H. Chen. 2015. The ultrasoundtreated soybean seeds improve eddibility and nutritional quality of soybean sprouts. Food Research International. 77 : 704-710. https://doi.org/10.1016/j.foodres.2015.01.011
  23. Yoneyama, K., T. Akashi, and T. Aoki. 2016. Molecular characterization of soybean pterocarpan 2-dimethylallyltransferase in glyceollin biosynthesis: Local gene and whole-genome duplications of prenyltransferase gene led to the structural diversity of soybean prenylated isoflavonoids. Plant Cell Physiol. 57(12) : 2497-2509. https://doi.org/10.1093/pcp/pcw178
  24. Yu, J., X, Bi, B. Yu, and D. Chen. 2016. Isoflavones: Anti-inflammatory benefit and possible caveats. Nutrients 8 : 361. doi:10.3390/nu8060361.
  25. Yu, O., W. Jung, J. Shi, R. A. Croes, G. M. Fader, B. McGonigle, and J. T. Odell. 2000. Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol. 124(2) : 781-794. https://doi.org/10.1104/pp.124.2.781
  26. Yuk, H. J., Y. H. Song, M. J. Curtis-Long, D. W. Kim, S. G. Woo, Y. B. Lee, Z. Uddin, C. Y. Kim, and K. H. Park. 2016. Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean leaves. J. Agric. Food Chem. 64 : 7315-7324. https://doi.org/10.1021/acs.jafc.6b02543
  27. Yun, J., X. Li, X. Fan, W. Li, and Y. Jiang. 2013. Growth and quality of soybeans sprouts as affected by gamma irradiation. Radiation Physics Chem. 82 : 106-111. https://doi.org/10.1016/j.radphyschem.2012.09.004