DOI QR코드

DOI QR Code

A Study on Establishment of Criteria to Identify the Defense Industrial Technology of Diesel Engine for Military Vehicle

군용차량을 위한 디젤기관의 방산기술 식별기준 정립에 관한 연구

  • Yoon, Heung-Soo (Dept. of Security and Management Engineering, Graduate School, Myongji University) ;
  • Ryu, Yeon-Seung (Dept. of Security and Management Engineering, Graduate School, Myongji University)
  • 윤흥수 (명지대학교 대학원 보안경영공학과) ;
  • 류연승 (명지대학교 대학원 보안경영공학과)
  • Received : 2018.12.12
  • Accepted : 2019.03.20
  • Published : 2019.03.28

Abstract

The Defense Technology Security Act was enacted in 2015 to protect the defense industrial technology from being duplicated or interfering technologies being developed, which prevents its value and utility from deterioration and prevents inappropriate export. Defense industrial technology refers to technology that should be protected for national security among the national defense science and technology related to the defense industry. However, technical identification criteria of identification and management system of protection technology are not regulated. Therefore, in this study, through the Delphi survey, diesel engine core technology identification criteria related to the high efficiency internal combustion engine propulsion technology among the 141 defense industrial technologies is established to improve the identification and management system of the technology to be protected among the defense industrial technology protection system. As a result of the study, operational operability, durability, safety, sequencing and modularization were established as diesel engine core technology identification criteria.

방산기술이 복제되거나 방해기술이 발달되어 그 가치와 효용이 낮아지는 것을 방지하고 부적절한 수출을 방지하기 위한 보호가 필요하여 2015년도에 방위산업기술보호법이 제정되었다. 방산기술이란 방위산업과 관련된 국방과학기술 중에서 국가안보를 위하여 보호되어야 하는 기술을 의미한다. 그러나 현재 방산기술 보호체계 중에서 보호대상 기술의 식별 및 관리 체계의 기술식별 기준이 법규화 되어 있지 않다. 이에 본 연구에서는 델파이 설문을 통하여 141개 방산기술 중에서 고효율 내연기관 추진 기술과 관련 있는 디젤기관 요소기술 식별기준을 정립하고 방산기술 보호체계 중 보호대상 기술의 식별 및 관리 체계를 개선하였다. 연구결과로 디젤기관 요소기술 식별기준으로 작전 운용성, 내구성, 안전성, 계열화 및 모듈화 등을 정립하였다.

Keywords

Table 1. Construction of Kendall's W[19]

OHHGBW_2019_v10n3_177_t0001.png 이미지

Table 2. Literature review results

OHHGBW_2019_v10n3_177_t0002.png 이미지

Table 3. Expert interview results

OHHGBW_2019_v10n3_177_t0003.png 이미지

Table 4. Statistical processing of Delphi 1st survey results

OHHGBW_2019_v10n3_177_t0004.png 이미지

Table 5. Additional items derived from the Delphi 1st survey

OHHGBW_2019_v10n3_177_t0005.png 이미지

Table 6. Statistical processing of Delphi 2nd survey results

OHHGBW_2019_v10n3_177_t0006.png 이미지

Table 7. Delphi 1st, 2nd survey on diesel engine technology identification criteria

OHHGBW_2019_v10n3_177_t0007.png 이미지

References

  1. National Law Information Center. (2018). http://www.law.go.kr/LSW/lsRvsRsnListP.do?lsId=012437&chrClsCd=010102.
  2. Defense Acquisition Program Administration. (2017). Defense Technology Security Guide 11-1690000-001928-01, 6-7.
  3. National Law Information Center. (2018). http://www.law.go.kr/법령/방위산업기술보호법.
  4. Korea Automotive Technology Institute. (2013). A Study on the Optimized of Military Vehicles According to Type of An Army, 8-15.
  5. B. K. Lee. (2010). A Selection Model of the Development Factors of Military Vehicles Using Analytic Hierarchy Process. Doctors dissertation. Kwangwoon University, 8-10.
  6. J. B. Lee. (2009). A legal study on the protection of industrial technology in corporate mergers and acquisitions(M&A). Journal of Korean Branch of International Association of Constitutional Law, 297-298.
  7. B. C. Won. (2017). http://www.boannews.com/media/view.asp?idx=55492&kind=1.
  8. Defense Acquisition Program Administration. (2017). Defense Technology Security Act Q&A, 23.
  9. Defense Agency for Technology and Quality. (2015). A Study of identification of Defense Industrial Technology, 53-55.
  10. Sungkyunkwan University industry-Academy Collaboration Foundation. (2016). A Defense Development Plans of Defense Industrial Technology, viii-ix.
  11. A. R. Hur. (2018). A Study on Classification of Defense Industrial Technology Information. Masters dissertation. Myongji University, 1-3.
  12. H. S. Yoon & Y. S. Ryu. (2018). A Study on Improvement of Test & Evaluation of Vehicle Part in Mixed Equipment and Defense Industrial Technology, Journal of Korea Convergence Society, 9(7), 241-249. https://doi.org/10.15207/JKCS.2018.9.7.241
  13. Rowe, G., & Wright, A. M. (2001). Judgment change during Delphi-like procedures: The role of majority influence, expertise, and confidence. Technological Forecasting and Social Change, 72(4), 377-399. https://doi.org/10.1016/j.techfore.2004.03.004
  14. M. R. Lynn. (1986). Determination and quantification of content validity. Nursing Research, 35(6), 382-385.
  15. Y. J. Yoon & J. I. Lee. (1998). An Analysis of the Reliability of Technology Forecasting Outcomes, Journal of Korea Technology Innovation Society, 1(2), 276.
  16. Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28(4), 563-575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
  17. H. J. Noh. (2015). Nonparametric statistical analysis and correspondence analysis using SPSS. JiPhilmedia, 210.
  18. H. J. Noh & H. Y. Jung. (2008). Introduction to statistical analysis by SPSS. Hanol publisher, 201.
  19. Schmidt, R. C. (1997). Managing Delphi surveys using nonparametric statistical techniques. Decision Sciences Journal, 28(3), 763-774. https://doi.org/10.1111/j.1540-5915.1997.tb01330.x
  20. Sidney Chaves, Jose Afonso Mazzon, and Cesar Alexandre de Souza. (2012). Proposition of A Method to Measure Rankings Using the Delphi Technique, Future Journal, 4(2), 52-75.
  21. B. K. Lee & Y. K. Cho. (2010). Priority Decision based on User's Requirements for the Development of Military Vehicles. Journal of The Korean Society of Automotive Engineers, 18(6), 122-129.