DOI QR코드

DOI QR Code

Convergence study on the through inhibition of differentiation in 3T3-L1 cells of ethanol extract from Trichosanthes kirilowii Maxim. Root

하늘타리(Trichosanthes kirilowii Maxim.) 뿌리 에탄올 추출물의 3T3-L1 지방세포 분화 억제 융합연구

  • Kim, Sung Ok (Department of Food Science & Biotechnology (Nutrition), Kyungsung University) ;
  • Jeung, Ji-Suk (Wild Flower Institute, Gurye-gun Agricultural Center)
  • 김성옥 (경성대학교 식품응용공학부 식품영양전공) ;
  • 정지숙 (구례군농업기술센터 구례야생화연구소)
  • Received : 2019.02.11
  • Accepted : 2019.03.20
  • Published : 2019.03.28

Abstract

The ami of our study was on the anti-obesity effect of ethanol extract from Trichosanthes kirilowii Maxim root (TKM) in murine adipocytes, 3T3-L1 cells. This study focused on anti-adipogenic activity through inhibition of cell differentiation in 3T3-L1 cells treated TKM. 100 ug/ml of non-cytotoxic TEM remarkablely inhibited content of triglycerol and suppressed expressions of $C/EBP{\alpha}$, $PPAR{\gamma}a$ and SREBP-1c related with lipogenic transcription factors in theres 3T3-L1 cells compared to (-)control cells. As phosphorylations of AMPK and ACC were incerased, HSL and CPT-1 mRNA expression increased upon TKM treatment, which involved in inhibition of fatty acid synthase expression. In conclusion, these results indicate that TKM can inhibit mRNA and protein expression of lipogenic genes in 3T3-L1 adipocytes. Our study suggests that TKM has potential anti-obesity effects and is a convergence therapeutic functional agent with anti-adipogenic activity via hypolipogenesis.

본 연구는 3T3-L1 세포로 하늘타리(Trichosanthes kirilowii Maxim) 뿌리 에탄올 추출물(TKM)의 항비만 활성을 조사하였다. TKM 처리 한 3T3-L1 지방세포의 분화억제를 통한 지방생성 억제에 초점을 두었다. 세포독성을 나타내지 않는 100ug/ml 농도에서 TG 함량을 현저히 억제하고, 세포 초기분화 전사인자 $PPAR{\gamma}$, $C/EBP{\alpha}$, SREBP-1c의 발현 억제, 세포내 에너지 향상성 조절인자 pAMPK, 중성지방산의 합성분해 조절인자 pACC, CPT-1, 지방산 합성 효소(FAS) 발현 억제, 호르몬자극지방분해 효소(HSL) 활성화 등 지방합성 관련인자들의 발현 조절 효능이 있는 것으로 확인되었다. 이상의 결과로 TKM은 지방세포 분화와 지방대사 관련 인자들의 발현을 조절함으로써 지방 생성과 축적 저해 효능을 보여 항비만 융합치료제로의 가능성을 제시하였다.

Keywords

OHHGBW_2019_v10n3_127_f0001.png 이미지

Fig. 2. Effect of TKM (Trichosanthes kirilowii Maxim. root) ethanol extract on Oil Red O staining and triglyceride contents in differentiated 3T3-L1 adipocytes. A, captured with a microscope; B, quantified by the lipid accumulation using spectrophotometer. Results were expressed as the mean±SE of three independent experiments. Student’s t-test was performed using GraphPad Prism 5 program. *P<0.05, control vs. TKM. Fenofibrate was a positive control.

OHHGBW_2019_v10n3_127_f0002.png 이미지

Fig. 1. Effect of the Trichosanthes kirilowii Maxim root (TKM) on viability of 3T3-L1 cells. MTT assay. Results were expressed as the mean±SD of three independent experiments. Student’s t-test was performed using GraphPad Prism 5 program. NS, none significance, *P<0.05, control vs. TKM.

OHHGBW_2019_v10n3_127_f0003.png 이미지

Fig. 3. Effect of TKM extract on mRNA (black) and protein (white) expressions in the 3T3-L1 cells. GAPDH and β-actin was used as a loading control in RT-PCR and western blot. Vehicle control (-), Resveratrol as positive control (+) and TKM treated cells. TKM; 100 μg/ml Trichosanthes kirilowii Maxim ethanol extracts.

Table 1. Oligonucleotides sequence used in PCR

OHHGBW_2019_v10n3_127_t0001.png 이미지

References

  1. OECD. (2018). OECD Health Statistics. http://www.oecd.org
  2. The Ministry of Health and Welfare(MOHW). Korea Centers for Disease Control & Prevention Korea National Health and Nutrition Examination Survey (2017), https://knhanes.cdc.go.kr/knhanes/sub05/sub05_01_view.do.
  3. Guidelines for Obesity therapy (2018). Korean Society for the Study of Obesity (KSSO). http://www.kosso.or.kr/file/file180614.pdf
  4. Y. Huang, P. He, K. P. Bader, A. Radunz & G. H. Schmid. (2000). Seeds of Trichosanthes kirilowii, an energy-rich diet. Zeitschrift fur Naturforschung. C J biosci. 55(3), 189-194. DOI : 10.1515/znc-2000-3-409
  5. T. Akihisa, W. C. M. C. Kokke, J. A. Krause, T. Tamura, D. S. Eggleston, S. I. Katayama, Y. Kimura & T. Tamura. (1992). 5-Dehydrokarounidiol [ D - C - Friedo - Oleana - 5, 7, 9(11)-Triene-3-Alpha,29-Diol], a novel triterpene from Trichosanthes kirilowii Maxim. Chem Pharm Bull. 40(12), 3280-3283. DOI : 10.1248/cpb.40.3280
  6. T. Akihisa, W. C. M. C. Kokke, T. Tamura & T. Nambara. (1992). 7-Oxodihydrokarounidiol [7-Oxo-Dc- Friedo-Olean8-Ene-3-Alpha,29-Diol], a novel triterpene from Trichosanthes kirilowii. Chem Pharm Bull. 40(5), 1199-1202. DOI : 10.1248/cpb.40.1199
  7. X. M. Fan, G. Chen, Y. Sha, X. Lu, M. Shen, H. M. Ma, & Y. H. Pei. (2012). Chemical constituents from the fruits of Trichosanthes kirilowii. J Asian Nat Prod Res. 14(6), 528-532. DOI : 10.1080/10286020.2012.672410
  8. J. Kitajima & Y. Tanaka. (1989). Studies on the constituents of trichosanthes root. I. Constituents of roots of Trichosanthes kirilowii Maxim. var. japonicum Kitam. Yakugaku zasshi. 109(4), 250-255. DOI : None https://doi.org/10.1248/yakushi1947.109.4_250
  9. Y. Ozaki, L. Xing & M. Satake. (1996). Antiinflammatory effect of Trichosanthes kirilowii Maxim. and its effective parts. Biol Pharm Bull. 19(8), 1046-1048. DOI : 10.1248/bpb.19.1046
  10. T. C. Otto, M. D. Lane (2005). Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol. 40(4), 229-42. DOI : 10.1080/10409230591008189
  11. S. Ambati, J. Y. Yang, S. Rayalam, H. J. Park, M. A. Della-Fera & C. A. Baile. (2009). Ajoene exerts potent effects in 3T3-L1 adipocytes by inhibiting adipogenesis and inducing apoptosis. Phytother Res. 23(4), 513-518. DOI : 10.1002/ptr.2663
  12. J. A. Lee, Y. J. Park, W. S. Jeong & S. S. Hong. (2017). Anti-obesity effect of Amomum taso-ko ethanol extract in 3T3-L1 adipocytes. J Appl Bio Chem. 60(1), 23-28. DOI : https://doi.org/10.3839/jabc.2017.005
  13. B. B. Zhang, G. Zhou & C. Li. (2009). AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 9(5), 407-416. DOI : 10.1016/j.cmet.2009.03.012
  14. L. Orci, W. S. Cook, M. Ravazzola, M. Y. Wang, B. H. Park, R. Montesano & R. H. Unger (2004). Rapid transformation of white adipocytes into fat-oxidizing machines. Proc. Natl. Acad. Sci. USA 101(7), 2058-2063. DOI: 10.1073/pnas.0308258100
  15. M. M. Gonzalez-Barroso, A. Anedda, E. Gallardo-Vara, M. Redondo-Horcajo, L. Rodriguez-Sanchez & E. Rial. (2012). Fatty acids revert the inhibition of respiration caused by the antidiabetic drug metformin to facilitate their mitochondrial ${\beta}$-oxidation. Biochim Biophys Acta. 1817(10), 1768-1775. DOI : 10.1016/j.bbabio.2012.02.019
  16. D. G. Hardie. (2004). The AMP-activated protein kinase pathway-new players upstream and downstream. J Cell Sci 117(23), 5479-5487. DOI : 10.1242/jcs.01540