DOI QR코드

DOI QR Code

Numerical Analysis of the Temperature Distribution Considering the Wall Thermal Conductivity in Compartment Fire

구획 화재 시 벽면의 열적 특성을 고려한 온도분포 해석결과

  • You, Woo Jun (Department of Architecture & Fire Safey, Dong-Yang University) ;
  • Ko, Kwon Hyun (Department of Safety Engineering, Dong-Yang University)
  • 유우준 (동양대학교 건축소방안전학과) ;
  • 고권현 (동양대학교 안전공학과)
  • Received : 2018.10.29
  • Accepted : 2019.02.01
  • Published : 2019.02.28

Abstract

This study examined effects of the wall thermal conductivity coefficients on the thermal fluid phenomenon of a compartment fire. The reduced scale compartment was 0.4 m in width, 0.6 m in length and 0.6 m in height with a fire-board, which has a thermal conductivity coefficient of $0.18W/m{\cdot}K$. The local temperature at a 0.37 m height and the overall heat release rate were measured under the following experiment conditions: a $0.12m^2$ opening area and $0.01m^2$ pool size of a gasoline fire. The numerical results obtained by the Fire Dynamic Simulation were compared with the experimentally measured temperature. The deviations were within 10 % in the period of the steady state for maximum heat release rate (4.8 kW). The numerical results show that the average temperature of the compartment wall decreases by approximately 71 % with increasing thermal conductivity coefficient from $0.1W/m{\cdot}K$ to $100.0W/m{\cdot}K$ on the fixed heat release rate.

본 연구에서는 구획 공간에서 가솔린 화재 시 내벽의 열전도 계수 변화에 따른 열유동 현상에 관한 기초 연구를 수행하였다. 이를 위해서 내벽의 열전도 계수가 $0.18W/m{\cdot}K$인 내화보드의 재질로 구성된 가로 0.4 m, 세로 0.6 m, 높이 0.6m인 축소된 구획공간을 제작하였으며, 개구부 면적이 $0.12m^2$이고 연료 팬의 크기가 $0.01m^2$인 조건에서 가솔린 화재실험을 수행하여 높이 0.37 m 국부지점의 온도와 총괄 발열량을 산출하였다. 벽면 열전도 계수 변화가 구획 공간 내부의 온도 분포에 미치는 영향을 분석하기 위해서 화재해석 프로그램인 FDS(Fire Dynamic Simulator)를 사용하여 동일한 발열량 조건에서 온도분포 측정값과 해석결과를 비교하였다. 그 결과 최대 발열량이 4.8 kW인 정상상태 구간에서 온도분포 예측 값이 10 % 이내로 일치하는 것을 확인하였으며, 벽면 열전도 계수가 $0.1W/m{\cdot}K$에서부터 $100W/m{\cdot}K$까지 증가한 결과 벽면의 평균 온도는 약 71% 정도 감소되는 것으로 예측되었다.

Keywords

SHGSCZ_2019_v20n2_644_f0001.png 이미지

Fig. 1. Schematic diagram of the experiment in a cone calorimeter.

SHGSCZ_2019_v20n2_644_f0002.png 이미지

Fig. 2. Heat release rate vs ignition time for gasoline pool fire.

SHGSCZ_2019_v20n2_644_f0003.png 이미지

Fig. 3. Heat release rate vs time for pool area = 0.01 ㎡).

SHGSCZ_2019_v20n2_644_f0004.png 이미지

Fig. 4. Temperature contour in 3 dimensional for fixed heat release rate(4.8kW).

SHGSCZ_2019_v20n2_644_f0005.png 이미지

Fig. 5. Contour of wall temperature at k=0.1 W/m·K for at 4.8 kW heat release rate.

SHGSCZ_2019_v20n2_644_f0006.png 이미지

Fig. 6. The effects of k(0.1, 1.0, 10.0, 50.0 and 100 W/m·K) on the wall temperature distribution from 0.2m distance from the fire origin for fixed heat release rate.

Table 2. Test results of grid independence

SHGSCZ_2019_v20n2_644_t0001.png 이미지

Table 3. FDS Variables : Thermal conductivity coefficient, HRR, Fuel and material properties

SHGSCZ_2019_v20n2_644_t0002.png 이미지

References

  1. S. Y. Mun, C. H. Park, C. H. Hwang and S. H. Park, "Effects of the Geometry and Location of an Vertical Opening on the Fire Characteristics in the Under-Ventilated Compartment Fire", Journal of Korean Institute of Fire Science & Engineering, Vol. 27, No. 3, pp. 20-29 (2013).
  2. W. J. You and G. H. Ko, Investigation of the Relationship Between Wall Thermal Conductivity and Inner Room Temperature in Compartment Fires, Fire Sci. Eng., Vol. 32, No. 2, pp. 7-13, (2018).
  3. L. Bergman, Theodore and P. Frank, "Incropera. Fundamentals of Heat and Mass Transfer", John Wiley & Sons (2011).
  4. M. Foley, "The use of Small Scale Fire Test Data for the Hazard Assessment of Bulk Materials", Ph.D Thesis, University of Edinburgh (1995).
  5. J. G. Quintiere, "Scaling Application in Fire Research", Fire Safety Journal, Vol. 15, pp. 3-29 (1989). https://doi.org/10.1016/0379-7112(89)90045-3
  6. C. L. Beyler, "Ignition and Burning of a Layer of Incomplete Combustion Products," Combustion Science and Technology, 39, pp. 287-303 (1984). https://doi.org/10.1080/00102208408923793
  7. P. H. Thomas and A. J. M. Heselden, "Fully Developed Fires in Compartments," CIB Report No. 20; Fire Research Note No. 923, Conseil International du Batiment, France (1972).
  8. W. D. Walton and P. H. Thomas, "Estimating Temperatures in Compartment Fires," in SFPE Handbook of Fire Protection Engineering, 3rd ed. (P.J. Di Nenno et al., eds.) pp. 3.171-3.188 (Society of Fire Protection Engineers, Boston, 2002).
  9. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt, "Fire Dynamics Simulator User's Guide", NIST Special Publication 1019, 6th Edition (2015).
  10. J. DiNenno, Philip, "SFPE Handbook of Fire Protection Engineering", SFPE (2008).