DOI QR코드

DOI QR Code

Estimation of GHGs Emission to Improvement of Facility Efficiency in the Food wastewater Treatment Process

식품폐수처리시설의 설비효율 개선에 따른 온실가스 배출량 평가

  • An, Sang-Hyung (Department of Energy&Climate Fusion Technology, Hoseo University) ;
  • Song, Jang-Heon (Department of Energy&Climate Fusion Technology, Hoseo University) ;
  • Kim, San (Department of Energy&Climate Fusion Technology, Hoseo University) ;
  • Chung, Jin-Do (Department of Energy&Climate Fusion Technology, Hoseo University)
  • 안상형 (호서대학교 에너지기후융합기술학과) ;
  • 송장헌 (호서대학교 에너지기후융합기술학과) ;
  • 김산 (호서대학교 에너지기후융합기술학과) ;
  • 정진도 (호서대학교 에너지기후융합기술학과)
  • Received : 2018.10.16
  • Accepted : 2019.02.01
  • Published : 2019.02.28

Abstract

In the food wastewater treatment facilities, the water quality improvement effect and the greenhouse gas emission amount followed by the change in electricity usage through a change of the aeration tank ventilation system were evaluated. also, the amount of greenhouse gas emission followed by the change in electricity usage through the change of the sludge dewatering, storage, transporting method was also evaluated. The total GHG emission from food wastewater treatment facility improvement were divided into direct emissions from the treatment processes and indirect ones from electricity usage. The water quality improvement effect of wastewater treatment plant was found to be 63.3% for BOD removal rate, 42.0% for COD removal rate, 71.0% for SS removal rate and 39.6% for T-N removal rate. and according to the results of calculating output by applying both direct emissions of greenhouse gas (Scope 1) and the indirect emission (Scope 2) of greenhouse gas followed by changes in power consumption. It was estimated that there was a total of 276.0tCO2eq./yr(7.5%) greenhouse gas reduction effect from 3,668.8tCO2eq./yr before improvement to 3,392.8tCO2eq./yr after improvement. In this result is not due to the effects of water quality improvement of emission source, but because the reduction in electricity use has reduced the amount of greenhouse gas emissions.

식품 폐수 처리 설비중 폐수처리장 폭기조 송풍 설비 개선을 통한 수질개선 효과 및 전기사용량 변화에 따른 온실가스 발생량을 평가 하였으며, 식품 폐수처리장에서 발생되는 슬러지를 탈수, 보관, 이송하는 설비의 효율적인 개선을 통한 전기사용량 개선전과 개선후 변화에 따른 온실가스 발생량도 함께 평가하였다. 폐수처리장 설비 개선에 따른 온실가스 배출량 평가는 폐수처리 공정으로 부터의 직접배출과 전력사용으로부터의 간접배출량으로 구분 된다. 폐수처리장 수질 개선 효과는 BOD 제거율이 63.3%, COD 제거율 42.0%, SS 제거율 71.0%, T-N제거율이 39.6%로 나타났으며, 폐수처리에 의한 온실가스 직접배출량(Scope 1)과 전력소비량 변화에 대한 온실가스 간접배출량(Scope 2)을 적용하여 온실가스 배출량을 산정한 결과 설비 개선전 3,668.8tCO2eq./yr 에서 설비 개선후 3,392.8tCO2eq./yr 으로 감소 하여 총 276.0tCO2eq./yr (8.0%)의 온실가스 감축 효과가 있는 것으로 평가 되었다. 이상의 결과는 배출원의 수질 개선 효과로 인한 것이 아니라 전기사용량 감소로 인해 온실가스 배출량이 감소하였기 때문이다.

Keywords

SHGSCZ_2019_v20n2_378_f0001.png 이미지

Fig. 1. Schematic diagram of Sludge process in the Sludge hydroextractor

SHGSCZ_2019_v20n2_378_f0002.png 이미지

Fig. 2. Estimation of CO2, CH4 and N2O emission to the improvement of blower type in food wastewater process

SHGSCZ_2019_v20n2_378_f0003.png 이미지

Fig. 3. Estimation of CO2, CH4 and N2O emission to the improvement of sludge transfer system in food wastewater process

SHGSCZ_2019_v20n2_378_f0004.png 이미지

Fig. 4. Estimation of CO2, CH4 and N2O emission to the improvement of facility efficiency food wastewater process

Table 1. Calculation tool of GHGs emission by scope 1 and scope 2

SHGSCZ_2019_v20n2_378_t0001.png 이미지

Table 2. Total reduction of GHGs to the Improvement of blower type in food wastewater process

SHGSCZ_2019_v20n2_378_t0002.png 이미지

Table 3. Total reduction of GHGs to the improvement of sludge transfer system in food wastewater process

SHGSCZ_2019_v20n2_378_t0003.png 이미지

References

  1. Australian Department of the Environment (2015), Assessment and Recommendations, Figure 30. Australia's greenhouse-gas emission reduction is now focused on the target for 2030, Version 2-Last updated, 23-Feb-2017. DOI: https://doi.org/10.1787/888933456919
  2. Nazih K. Shammas, Lawrence K. Wang, "Handbook of Advanced Industrial and Hazardous Wastes Management", pages 539 to 576, 30 Oct 2017. DOI: https://doi.org/10.1201/9781315117423-17
  3. Stefan Niederhafner, Journal Article published 2014 in SSRN Electronic Journal, The Korean Energy and GHG Target Management System: An Alternative to Kyoto-Protocol Emissions Trading Systems?, DOI: https://doi.org/10.2139/ssrn.2508143
  4. Choon-Hwan Shin, Do-Hyun Park, Estimation of Greenhouse Gas Emissions and Environmental Assessment of Dye Wastewater Treatment Process, pages 1881 to 1888, 28 Nov 2014. DOI: https://doi.org/10.5322/jesi.2014.23.11.1881
  5. British Standards Document, PAS 2395:2014 Specification for the assessment of greenhouse gas (GHG) emissions from the whole life cycle of textile products. DOI:https://doi.org/10.3403/30282110