참고문헌
- Alayev, A. and Holz, M. K. (2013) mTOR signaling for biological control and cancer. J. Cell Physiol. 228, 1658-1664. https://doi.org/10.1002/jcp.24351
- Baranasic, D., Gacesa, R., Starcevic, A., Zucko, J., Blazic, M., Horvat, M., Gjuracic, K., Fujs, S., Hranueli, D., Kosec, G., Cullum, J. and Petkovic, H. (2013) Draft genome sequence of Streptomyces rapamycinicus Strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announc. 1, e00581-13.
- Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C. H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M. A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J. and Hopwood, D. A. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141-147. https://doi.org/10.1038/417141a
- Berdy, J. (2005) Bioactive microbial metabolites. J. Antibiot. (Tokyo) 58, 1-26. https://doi.org/10.1038/ja.2005.1
- Bhattarai, S., Liou, K. and Oh, T. J. (2013) Hydroxylation of long chain fatty acids by CYP147F1, a new cytochrome P450 subfamily protein from Streptomyces peucetius. Arch. Biochem. Biophys. 539, 63-69. https://doi.org/10.1016/j.abb.2013.09.008
- Bradley, S. G. and Ritzi, D. (1968) Composition and ultrastructure of Streptomyces venezuelae. J. Bacteriol. 95, 2358-2364. https://doi.org/10.1128/JB.95.6.2358-2364.1968
- Chater, K. F. and Chandra, G. (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol. Rev. 30, 651-672. https://doi.org/10.1111/j.1574-6976.2006.00033.x
- Chun, Y. J., Shimada, T., Sanchez-Ponce, R., Martin, M. V., Lei, L., Zhao, B., Kelly, S. L., Waterman, M. R., Lamb, D. C. and Guengerich, F. P. (2007) Electron transport pathway for a Streptomyces cytochrome P450: cytochrome P450 105D5-catalyzed fatty acid hydroxylation in Streptomyces coelicolor A3(2). J. Biol. Chem. 282, 17486-17500. https://doi.org/10.1074/jbc.M700863200
- Chun, Y. J., Shimada, T., Waterman, M. R. and Guengerich, F. P. (2006) Understanding electron transport systems of Streptomyces cytochrome P450. Biochem. Soc. Trans. 34, 1183-1185. https://doi.org/10.1042/BST0341183
- Chung, L., Liu, L., Patel, S., Carney, J. R. and Reeves, C. D. (2001) Deletion of rapQONML from the rapamycin gene cluster of Streptomyces hygroscopicus gives production of the 16-O-desmethyl-27-desmethoxy analog. J. Antibiot. (Tokyo) 54, 250-256. https://doi.org/10.7164/antibiotics.54.250
- Cupp-Vickery, J. R., Garcia, C., Hofacre, A. and McGee-Estrada, K. (2001) Ketoconazole-induced conformational changes in the active site of cytochrome P450eryF. J. Mol. Biol. 311, 101-110. https://doi.org/10.1006/jmbi.2001.4803
- Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y. and Liang, J. (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116-W118. https://doi.org/10.1093/nar/gkl282
- Dyson, P. (2011) Streptomyces: Molecular Biology and Biotechnology. Caister Academic Press, Norfolk, UK.
- Graziani, E. I. (2009) Recent advances in the chemistry, biosynthesis and pharmacology of rapamycin analogs. Nat. Prod. Rep. 26, 602-609. https://doi.org/10.1039/b804602f
- Guengerich, F. P. (2001) Analysis and characterization of enzymes and nucleic acids. In Principles and Methods of Toxicology (A. W. Hayes, Ed.), pp. 1625-1687. Taylor & Francis, Philadelphia.
- Gust, B., Challis, G. L., Fowler, K., Kieser, T. and Chater, K. F. (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. U.S.A. 100, 1541-1546. https://doi.org/10.1073/pnas.0337542100
- Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Cha, G. S., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2015) Functional characterization of CYP107W1 from Streptomyces avermitilis and biosynthesis of macrolide oligomycin A. Arch. Biochem. Biophys. 575, 1-7. https://doi.org/10.1016/j.abb.2015.03.025
- Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Cha, G. S., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2016) Structural analysis of the Streptomyces avermitilis CYP107W1-Oligomycin a complex and role of the Tryptophan 178 residue. Mol. Cells 39, 211-216. https://doi.org/10.14348/molcells.2016.2226
- Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Jeong, D., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2017) Structural insights into the binding of lauric acid to CYP107L2 from Streptomyces avermitilis. Biochem. Biophys. Res. Commun. 482, 902-908. https://doi.org/10.1016/j.bbrc.2016.11.131
- He, W., Wu, L., Gao, Q., Du, Y. and Wang, Y. (2006) Identification of AHBA biosynthetic genes related to geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Curr. Microbiol. 52, 197-203. https://doi.org/10.1007/s00284-005-0203-y
- Ikeda, H. (2017) Natural products discovery from micro-organisms in the post-genome era. Biosci. Biotechnol. Biochem. 81, 13-22. https://doi.org/10.1080/09168451.2016.1248366
- Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M. and Omura, S. (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526-531. https://doi.org/10.1038/nbt820
- Ikeda, H. and Omura, S. (1997) Avermectin biosynthesis. Chem. Rev. 97, 2591-2610. https://doi.org/10.1021/cr960023p
- Jakeman, D. L., Bandi, S., Graham, C. L., Reid, T. R., Wentzell, J. R. and Douglas, S. E. (2009) Antimicrobial activities of jadomycin B and structurally related analogues. Antimicrob. Agents Chemother. 53, 1245-1247. https://doi.org/10.1128/AAC.00801-08
- Kumar, Y. and Goodfellow, M. (2008) Five new members of the Streptomyces violaceusniger 16S rRNA gene clade: Streptomyces castelarensis sp. nov., comb. nov., Streptomyces himastatinicus sp. nov., Streptomyces mordarskii sp. nov., Streptomyces rapamycinicus sp. nov. and Streptomyces ruanii sp. nov. Int. J. Syst. Evol. Microbiol. 58, 1369-1378. https://doi.org/10.1099/ijs.0.65408-0
- Kumar, Y. and Goodfellow, M. (2010) Reclassification of Streptomyces hygroscopicus strains as Streptomyces aldersoniae sp. nov., Streptomyces angustmyceticus sp. nov., comb. nov., Streptomyces ascomycinicus sp. nov., Streptomyces decoyicus sp. nov., comb. nov., Streptomyces milbemycinicus sp. nov. and Streptomyces wellingtoniae sp. nov. Int. J. Syst. Evol. Microbiol. 60, 769-775. https://doi.org/10.1099/ijs.0.012161-0
- Lamb, D. C., Guengerich, F. P., Kelly, S. L. and Waterman, M. R. (2006) Exploiting Streptomyces coelicolor A3(2) P450s as a model for application in drug discovery. Expert Opin. Drug Metab. Toxicol. 2, 27-40. https://doi.org/10.1517/17425255.2.1.27
- Lamb, D. C., Ikeda, H., Nelson, D. R., Ishikawa, J., Skaug, T., Jackson, C., Omura, S., Waterman, M. R. and Kelly, S. L. (2003) Cytochrome p450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochem. Biophys. Res. Commun. 307, 610-619. https://doi.org/10.1016/S0006-291X(03)01231-2
- Lamb, D. C., Lei, L., Zhao, B., Yuan, H., Jackson, C. J., Warrilow, A. G., Skaug, T., Dyson, P. J., Dawson, E. S., Kelly, S. L., Hachey, D. L. and Waterman, M. R. (2010) Streptomyces coelicolor A3(2) CYP102 protein, a novel fatty acid hydroxylase encoded as a heme domain without an N-terminal redox partner. Appl. Environ. Microbiol. 76, 1975-1980. https://doi.org/10.1128/AEM.03000-09
- Lamb, D. C., Skaug, T., Song, H. L., Jackson, C. J., Podust, L. M., Waterman, M. R., Kell, D. B., Kelly, D. E. and Kelly, S. L. (2002) The cytochrome P450 complement (CYPome) of Streptomyces coelicolor A3(2). J. Biol. Chem. 277, 24000-24005. https://doi.org/10.1074/jbc.M111109200
- Lamb, D. C., Zhao, B., Guengerich, F. P., Kelly, S. L. and Waterman, M. R. (2011) Genomics of Streptomyces cytochrome P450. In Streptomyces Molecular Biology and Biotechnology (P. Dyson, Ed.), pp. 233-253. Caister Academic Press, Norfolk, UK.
- Lee, C. W., Lee, J. H., Rimal, H., Park, H. and Oh, T. J. (2016) Crystal Structure of Cytochrome P450 (CYP105P2) from Streptomyces peucetius and its conformational changes in response to substrate binding. Int. J. Mol. Sci. 17, 813. https://doi.org/10.3390/ijms17060813
- Lee, D., Lee, K., Cai, X. F., Dat, N. T., Boovanahalli, S. K., Lee, M., Shin, J. C., Kim, W., Jeong, J. K., Lee, J. S., Lee, C. H., Lee, J. H., Hong, Y. S. and Lee, J. J. (2006) Biosynthesis of the heat-shock protein 90 inhibitor geldanamycin: new insight into the formation of the benzoquinone moiety. Chembiochem. 7, 246-248. https://doi.org/10.1002/cbic.200500441
- Lim, Y. R., Han, S., Kim, J. H., Park, H. G., Lee, G. Y., Le, T. K., Yun, C. H. and Kim, D. (2017) Characterization of a Biflaviolin Synthase CYP158A3 from Streptomyces avermitilis and its role in the biosynthesis of secondary metabolites. Biomol. Ther. (Seoul) 25, 171-176. https://doi.org/10.4062/biomolther.2016.182
- Lim, Y. R., Hong, M. K., Kim, J. K., Doan, T. T., Kim, D. H., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2012) Crystal structure of cytochrome P450 CYP105N1 from Streptomyces coelicolor, an oxidase in the coelibactin siderophore biosynthetic pathway. Arch. Biochem. Biophys. 528, 111-117. https://doi.org/10.1016/j.abb.2012.09.001
- Lomovskaya, N., Otten, S. L., Doi-Katayama, Y., Fonstein, L., Liu, X. C., Takatsu, T., Inventi-Solari, A., Filippini, S., Torti, F., Colombo, A. L. and Hutchinson, C. R. (1999) Doxorubicin overproduction in Streptomyces peucetius: cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J. Bacteriol. 181, 305-318. https://doi.org/10.1128/JB.181.1.305-318.1999
- Madduri, K. and Hutchinson, C. R. (1995) Functional characterization and transcriptional analysis of a gene cluster governing early and late steps in daunorubicin biosynthesis in Streptomyces peucetius. J. Bacteriol. 177, 3879-3884. https://doi.org/10.1128/jb.177.13.3879-3884.1995
- McCarthy, A. J. and Williams, S. T. (1992) Actinomycetes as agents of biodegradation in the environment-a review. Gene 115, 189-192. https://doi.org/10.1016/0378-1119(92)90558-7
- Molnar, I., Aparicio, J. F., Haydock, S. F., Khaw, L. E., Schwecke, T., Konig, A., Staunton, J. and Leadlay, P. F. (1996) Organisation of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. Gene 169, 1-7. https://doi.org/10.1016/0378-1119(95)00799-7
- Moody, S. C., Zhao, B., Lei, L., Nelson, D. R., Mullins, J. G., Waterman, M. R., Kelly, S. L. and Lamb, D. C. (2012) Investigating conservation of the albaflavenone biosynthetic pathway and CYP170 bifunctionality in Streptomycetes. FEBS J. 279, 1640-1649. https://doi.org/10.1111/j.1742-4658.2011.08447.x
- Mukherjee, S. and Mukherjee, U. (2009) A comprehensive review of immunosuppression used for liver transplantation. J. Transplant. 2009, 701464.
- Nagano, S., Cupp-Vickery, J. R. and Poulos, T. L. (2005) Crystal structures of the ferrous dioxygen complex of wild-type cytochrome P450eryF and its mutants, A245S and A245T: investigation of the proton transfer system in P450eryF. J. Biol. Chem. 280, 22102-22107. https://doi.org/10.1074/jbc.M501732200
- Niraula, N. P., Bhattarai, S., Lee, N. R., Sohng, J. K. and Oh, T. J. (2012) Biotransformation of flavone by CYP105P2 from Streptomyces peucetius. J. Microbiol. Biotechnol. 22, 1059-1065. https://doi.org/10.4014/jmb.1201.01037
- Oliynyk, M., Samborskyy, M., Lester, J. B., Mironenko, T., Scott, N., Dickens, S., Haydock, S. F. and Leadlay, P. F. (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat. Biotechnol. 25, 447-453. https://doi.org/10.1038/nbt1297
- Ortiz de Montellano, P. R. (2005) In Cytochrome P450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, Ed.). Plenum Press, New York.
- Otten, S. L., Liu, X., Ferguson, J. and Hutchinson, C. R. (1995) Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis. J. Bacteriol. 177, 6688-6692. https://doi.org/10.1128/jb.177.22.6688-6692.1995
- Pandey, B. P., Roh, C., Choi, K. Y., Lee, N., Kim, E. J., Ko, S., Kim, T., Yun, H. and Kim, B. G. (2010) Regioselective hydroxylation of daidzein using P450 (CYP105D7) from Streptomyces avermitilis MA4680. Biotechnol. Bioeng. 105, 697-704. https://doi.org/10.1002/bit.22582
- Parajuli, N., Basnet, D. B., Chan Lee, H., Sohng, J. K. and Liou, K. (2004) Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces. Arch. Biochem. Biophys. 425, 233-241. https://doi.org/10.1016/j.abb.2004.03.011
- Podust, L. M., Bach, H., Kim, Y., Lamb, D. C., Arase, M., Sherman, D. H., Kelly, S. L. and Waterman, M. R. (2004) Comparison of the 1.85 A structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways. Protein Sci. 13, 255-268. https://doi.org/10.1110/ps.03384804
- Podust, L. M., Kim, Y., Arase, M., Neely, B. A., Beck, B. J., Bach, H., Sherman, D. H., Lamb, D. C., Kelly, S. L. and Waterman, M. R. (2003) The 1.92-A structure of Streptomyces coelicolor A3(2) CYP154C1. A new monooxygenase that functionalizes macrolide ring systems. J. Biol. Chem. 278, 12214-12221. https://doi.org/10.1074/jbc.M212210200
- Rimal, H., Yu, S. C., Lee, J. H., Tokutaro, Y. and Oh, T. J. (2018) Hydroxylation of Resveratrol with DoxA In Vitro: An Enzyme with the Potential for the Bioconversion of a Bioactive Stilbene. J. Microbiol. Biotechnol. 28, 561-565. https://doi.org/10.4014/jmb.1711.11047
- Rudolf, J. D., Chang, C. Y., Ma, M. and Shen, B. (2017) Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat. Prod. Rep. 34, 1141-1172. https://doi.org/10.1039/C7NP00034K
- Savino, C., Montemiglio, L. C., Sciara, G., Miele, A. E., Kendrew, S. G., Jemth, P., Gianni, S. and Vallone, B. (2009) Investigating the structural plasticity of a cytochrome P450: three-dimensional structures of P450 EryK and binding to its physiological substrate. J. Biol. Chem. 284, 29170-29179. https://doi.org/10.1074/jbc.M109.003590
- Shafiee, A. and Hutchinson, C. R. (1987) Macrolide antibiotic biosynthesis: isolation and properties of two forms of 6-deoxyerythronolide B hydroxylase from Saccharopolyspora erythraea (Streptomyces erythreus). Biochemistry 26, 6204-6210. https://doi.org/10.1021/bi00393a037
- Sherman, D. H., Li, S., Yermalitskaya, L. V., Kim, Y., Smith, J. A., Waterman, M. R. and Podust, L. M. (2006) The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. J. Biol. Chem. 281, 26289-26297. https://doi.org/10.1074/jbc.M605478200
- Song, J. Y., Yoo, Y. J., Lim, S. K., Cha, S. H., Kim, J. E., Roe, J. H., Kim, J. F. and Yoon, Y. J. (2016) Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites. J. Biotechnol. 219, 57-58. https://doi.org/10.1016/j.jbiotec.2015.12.028
- Stach, J. E. and Bull, A. T. (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie Van Leeuwenhoek 87, 3-9. https://doi.org/10.1007/s10482-004-6524-1
- Stassi, D., Donadio, S., Staver, M. J. and Katz, L. (1993) Identification of a Saccharopolyspora erythraea gene required for the final hydroxylation step in erythromycin biosynthesis. J. Bacteriol. 175, 182-189. https://doi.org/10.1128/jb.175.1.182-189.1993
- Tian, Z., Cheng, Q., Yoshimoto, F. K., Lei, L., Lamb, D. C. and Guengerich, F. P. (2013) Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor. Arch. Biochem. Biophys. 530, 101-107. https://doi.org/10.1016/j.abb.2013.01.001
- Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G. F., Chater, K. F. and van Sinderen, D. (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71, 495-548. https://doi.org/10.1128/MMBR.00005-07
- Vezina, C., Kudelski, A. and Sehgal, S. N. (1975) Rapamycin (AY- 22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo) 28, 721-726. https://doi.org/10.7164/antibiotics.28.721
- Wu, H., Qu, S., Lu, C., Zheng, H., Zhou, X., Bai, L. and Deng, Z. (2012) Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008. BMC Genomics 13, 337. https://doi.org/10.1186/1471-2164-13-337
- Xu, L. H., Fushinobu, S., Ikeda, H., Wakagi, T. and Shoun, H. (2009) Crystal structures of cytochrome P450 105P1 from Streptomyces avermitilis: conformational flexibility and histidine ligation state. J. Bacteriol. 191, 1211-1219. https://doi.org/10.1128/JB.01276-08
- Xu, L. H., Fushinobu, S., Takamatsu, S., Wakagi, T., Ikeda, H. and Shoun, H. (2010) Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis. J. Biol. Chem. 285, 16844-16853. https://doi.org/10.1074/jbc.M109.092460
- Xu, L. H., Ikeda, H., Liu, L., Arakawa, T., Wakagi, T., Shoun, H. and Fushinobu, S. (2015) Structural basis for the 4'-hydroxylation of diclofenac by a microbial cytochrome P450 monooxygenase. Appl. Microbiol. Biotechnol. 99, 3081-3091. https://doi.org/10.1007/s00253-014-6148-y
- Xue, Y., Wilson, D., Zhao, L., Liu, H. and Sherman, D. H. (1998a) Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem. Biol. 5, 661-667. https://doi.org/10.1016/S1074-5521(98)90293-9
- Xue, Y., Zhao, L., Liu, H. W. and Sherman, D. H. (1998b) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc. Natl. Acad. Sci. U.S.A. 95, 12111-12116. https://doi.org/10.1073/pnas.95.21.12111
- Zhao, B., Guengerich, F. P., Voehler, M. and Waterman, M. R. (2005) Role of active site water molecules and substrate hydroxyl groups in oxygen activation by cytochrome P450 158A2: a new mechanism of proton transfer. J. Biol. Chem. 280, 42188-42197. https://doi.org/10.1074/jbc.M509220200
- Zhao, B., Lamb, D. C., Lei, L., Kelly, S. L., Yuan, H., Hachey, D. L. and Waterman, M. R. (2007) Different binding modes of two flaviolin substrate molecules in cytochrome P450 158A1 (CYP158A1) compared to CYP158A2. Biochemistry 46, 8725-8733. https://doi.org/10.1021/bi7006959
- Zhao, B., Lei, L., Vassylyev, D. G., Lin, X., Cane, D. E., Kelly, S. L., Yuan, H., Lamb, D. C. and Waterman, M. R. (2009) Crystal structure of albaflavenone monooxygenase containing a moonlighting terpene synthase active site. J. Biol. Chem. 284, 36711-36719. https://doi.org/10.1074/jbc.M109.064683
- Zhao, B., Moody, S. C., Hider, R. C., Lei, L., Kelly, S. L., Waterman, M. R. and Lamb, D. C. (2012) Structural analysis of cytochrome P450 105N1 involved in the biosynthesis of the zincophore, coelibactin. Int. J. Mol. Sci. 13, 8500-8513. https://doi.org/10.3390/ijms13078500
피인용 문헌
- Functional Characterization of Pharmcogenetic Variants of Human Cytochrome P450 2C9 in Korean Populations vol.27, pp.6, 2019, https://doi.org/10.4062/biomolther.2019.112
- More P450s Are Involved in Secondary Metabolite Biosynthesis in Streptomyces Compared to Bacillus , Cyanobacteria , and Mycobacterium vol.21, pp.13, 2019, https://doi.org/10.3390/ijms21134814
- Avermectin Derivatives, Pharmacokinetics, Therapeutic and Toxic Dosages, Mechanism of Action, and Their Biological Effects vol.13, pp.8, 2020, https://doi.org/10.3390/ph13080196
- Ganoderma lucidum cultivation affect microbial community structure of soil, wood segments and tree roots vol.10, 2020, https://doi.org/10.1038/s41598-020-60362-2
- Self-sufficient Cytochrome P450s and their potential applications in biotechnology vol.30, 2019, https://doi.org/10.1016/j.cjche.2020.12.002