• Title/Summary/Keyword: Macrolide

Search Result 174, Processing Time 0.032 seconds

Emergence of macrolide resistance and clinical use of macrolide antimicrobials in children (Macrolide계 항균제 내성 출현과 소아에서의 임상적 적용)

  • Choi, Eun Hwa
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1031-1037
    • /
    • 2008
  • Macrolide antimicrobial agents including erythromycin, roxithromycin, clarithromycin, and azithromycin are commonly used in the treatment of respiratory tract infections in children. Newer macrolides that have structural modifications of older drug erythromycin show improved change in the spectrum of activity, dosing, and administration. However, recent studies reported that increasing use of macrolide antibiotics is the main force driving the development of macrolide resistance in streptococci. In particular, azithromycin use is more likely to select for macrolide resistance with Streptococcus pneumoniae than is clarithromycin use, a possible reflection of its much longer half life. Recently, erythromycin resistance rates of S. pneumoniae and Streptococcus pyogenes are rapidly increasing in Korea. Two main mechanisms of acquired macrolide resistance have been described, altered binding site on the bacterial ribosome encoded by the ermB gene and active macrolide efflux pump encoded by the mef gene. Relationship between the susceptibility of S. pneumoniae and the response to macrolides has been shown in studies of acute otitis media, but less clear in cases of pneumonia. This article reviews the spectrum of activity, pharmacokinetic properties, mechanisms of action and resistance, and clinical implication of resistance on the treatment of respiratory tract infections in children.

Prevalence and clinical manifestations of macrolide resistant Mycoplasma pneumoniae pneumonia in Korean children

  • Lee, Eun;Cho, Hyun-Ju;Hong, Soo-Jong;Lee, Jina;Sung, Heungsup;Yu, Jinho
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.5
    • /
    • pp.151-157
    • /
    • 2017
  • Purpose: Macrolide resistance rate of Mycoplasma pneumoniae has rapidly increased in children. Studies on the clinical features between macrolide susceptible-M. pneumoniae (MSMP) and macrolide resistant-M. pneumoniae (MRMP) are lacking. The aim of this study was to identify the macrolide resistance rate of M. pneumoniae in Korean children with M. pneumoniae penupmonia in 2015 and compare manifestations between MSMP and MRMP. Methods: Among 122 children (0-18 years old) diagnosed with M. pneumoniae pneumonia, 95 children with the results of macrolide sensitivity test were included in this study. Clinical manifestations were acquired using retrospective medical records. Results: The macrolide resistant rate of M. pneumoniae was 87.2% (82 of 94 patients) in children with M. pneumoniae pneumonia. One patient showed a mixed type of wild type and A2063G mutation in 23S rRNA of M. pneumoniae. There were no significant differences in clinical, laboratory, and radiologic findings between the MSMP and MRMP groups at the first visit to our hospital. The time interval between initiation of macrolide and defervescence was significantly longer in the MRMP group ($4.9{\pm}3.3$ vs. $2.8{\pm}3.1days$, P=0.039). Conclusion: The macrolide resistant rate of M. pneumoniae is very high in children with M. pneumoniae pneumonia in Korea. The clinical manifestations of MRMP are similar to MSMP except for the defervescence period after administration of macrolide. Continuous monitoring of the occurrence and antimicrobial susceptibility of MRMP is required to control its spread and establish strategies for treating second-line antibiotic resistant M. pneumoniae infection.

Development of PCR-Based Screening Methods for Macrolide Type Polyketides in Actinomycetes

  • Hyun, Chang-Gu;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.119-124
    • /
    • 1999
  • About two thirds of the naturally occurring antibiotics have been discovered from actinomycetes. Therefore, the probability of discovering further new antibiotics from actinomycetes is declining as many known metabolites are isolated repeatedly. However, various efforts leave been made in order to enhance the probability of discovering novel compounds. In the present study, we have developed new screening strategies based on the antibiotic biosynthetic pathway, and the genetic information, utilizing polymerase chain reaction. We have selected macrolide type polyketides. In order to divide the ansamycin group antibotic of macrolide type polyketides, we have selected 3-amino-5-hydroxybenzoic acid (AHBA) moiety which contains a biosynthetically unique structural element in the group as a target molecules. Oligonucleotide primers were designed to amplify DNA fragments of macrolide type polyketide synthase and AHBA synthase genes from fourteen actinomycetes species. This method was successfully applied to all three of the known macrolide type polyketide produccing actinomycetes tested. In addition, it also identified the presence of potential macrolide type polyketide producing genes from seven actinomycetes that were known to produce none of macrolide type polyketides, and AHBA biosynthetic genes in one actinomycetes. This technique is potentially useful for the screening of new antibiotices and cloning of their biosynthetic genes.

  • PDF

Substrate Specificity of the Macrolide-Phosphotransferase K (마크로라이드-포스포트란스페라제 K의 기질 특이성)

  • Kim, Sook-Kyung;Oh, Tae-Gwon;Baek, Moon-Chang;Kim, Byong-Kak;Choi, Eung-Chil
    • YAKHAK HOEJI
    • /
    • v.41 no.4
    • /
    • pp.530-532
    • /
    • 1997
  • The MICs of various macrolide, lincosamide and streptogramin B antibiotics against highly erythromycin-resistant Escherichia coli 209K strain were evaluated. E. coli 209K showed high MICs against 14-membered macrolides and the relatively weaker resistance to 16-membered macrolides, lincosamides and streptogramin B. The macrolide-phosphotransferase K from E. coli 209K showed greater substrate specificity to the 14-membered macrolide antibiotics than to the 16-membered macrolide antibiotics, lincosamide and streptogramin B. Therefore, it was considered that the high resistance was due to the macrolide-phosphotransferase K.

  • PDF

Therapeutic Efficacy and Safety of Prolonged Macrolide, Corticosteroid, Doxycycline, and Levofloxacin against Macrolide-Unresponsive Mycoplasma pneumoniae Pneumonia in Children

  • Ha, Seok Gyun;Oh, Kyung Jin;Ko, Kwang-Pil;Sun, Yong Han;Ryoo, Eell;Tchah, Hann;Jeon, In Sang;Kim, Hyo Jeong;Ahn, Jung Min;Cho, Hye-Kyung
    • Journal of Korean Medical Science
    • /
    • v.33 no.43
    • /
    • pp.268.1-268.11
    • /
    • 2018
  • Background: We aimed to compare the therapeutic efficacy of prolonged macrolide (PMC), corticosteroids (CST), doxycycline (DXC), and levofloxacin (LFX) against macrolide-unresponsive Mycoplasma pneumoniae (MP) pneumonia in children and to evaluate the safety of the secondary treatment agents. Methods: We retrospectively analyzed the data of patients with MP pneumonia hospitalized between January 2015 and April 2017. Macrolide-unresponsiveness was clinically defined with a persistent fever of ${\geq}38.0^{\circ}C$ at ${\geq}72$ hours after macrolide treatment. The cases were divided into four groups: PMC, CST, DXC, and LFX. We compared the time to defervescence (TTD) after secondary treatment and the TTD after initial macrolide treatment in each group with adjustment using propensity score-matching analysis. Results: Among 1,165 cases of MP pneumonia, 190 (16.3%) were unresponsive to macrolides. The proportion of patients who achieved defervescence within 48 hours in CST, DXC, and LFX groups were 96.9% (31/33), 85.7% (12/14), and 83.3% (5/6), respectively. The TTD after initial macrolide treatment did not differ between PMC and CST groups (5.1 vs. 4.2 days, P = 0.085), PMC and DXC groups (4.9 vs. 5.7 days, P = 0.453), and PMC and LFX groups (4.4 vs. 5.0 days, P = 0.283). No side effects were observed in the CST, DXC, and LFX groups. Conclusion: The change to secondary treatment did not show better efficacy compared to PMC in children with macrolide-unresponsive MP pneumonia. Further studies are needed to guide appropriate treatment in children with MP pneumonia.

Novel Macrolide Actin-inhibitors Isolated from Sea Sponges

  • Karaki, Hideaki;Ozaki, Hiroshi
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.105-108
    • /
    • 2001
  • Several marine toxins with macrolide structure have been found to act on actin. One of these toxins is mycalolide B isolated from the genus Mycale. This compound belongs to macrolide antibiotics and consists of tris-oxazole with strong cytotoxic activity ($IC_{50}$: 10-50 nM for growth of L1210 murine leukemia cells). This compound was found to be an actin-depolymerizing agent with the mode of action distinct from that of the known actin inhibitor, cytochalasin D. Tolytoxin, a macrolide isolated from cyano-bacteria with similar chemical structure to mycalolide B, seems to have similar effect. Another macrolide compound, aplyronine A, showed the effects similar to those of mycalolide B. Although bistheonellide A, a dimeric macrolide, did not show a severing effect, it de polymerized F-actin and sequestered G-actin by forming 1 : 2 complex with G-actins. Swinholide A has a structure and effects similar to those of bistheonel-lide A. In conclusion, mycalolide B, tolytoxin, aplyronine A, bistheonellide A and swinholide A are the members of "actin de polymerizing macrolide" the mechanism of which is different from that of cytochalasin D.halasin D.

  • PDF

Studies on the Resistance to Antibiotics in Bacteria Induced Resistance to Macrolide Antibiotics in Bacillus sp. (세균의 항생물질 내성에 관한 연구 Macrolide계 항생물질에 대한 유도 내성 Bacillus속 세균)

  • 최응칠;김병각;심미자;정경수;김혜령;이종길
    • YAKHAK HOEJI
    • /
    • v.26 no.3
    • /
    • pp.169-174
    • /
    • 1982
  • Several strains of bacteria having resistance to macrolide antibiotics were isolated. EMR-1, one of them, exhibited the induced resistance to macrolide antibiotics and this microorganism was identified as a bacterium belong to Bacillus species. The subinhibitory concentration of erythromycin or oleandomycin induced strong resistance to both erythromycin and oleandomycin themselves and to other macrolide antibiotics such as leucomycin, spiramycin and josamycin. The effective concentration of inducer, erythromycin was $0.0016-0.2\mu$g/ml. The inactivating enzyme of these antibiotics was not produced by EMR-1.

  • PDF

Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents

  • Cho, Myung-A;Han, Songhee;Lim, Young-Ran;Kim, Vitchan;Kim, Harim;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • The study of the genus Streptomyces is of particular interest because it produces a wide array of clinically important bioactive molecules. The genomic sequencing of many Streptomyces species has revealed unusually large numbers of cytochrome P450 genes, which are involved in the biosynthesis of secondary metabolites. Many macrolide biosynthetic pathways are catalyzed by a series of enzymes in gene clusters including polyketide and non-ribosomal peptide synthesis. In general, Streptomyces P450 enzymes accelerate the final, post-polyketide synthesis steps to enhance the structural architecture of macrolide chemistry. In this review, we discuss the major Streptomyces P450 enzymes research focused on the biosynthetic processing of macrolide therapeutic agents, with an emphasis on their biochemical mechanisms and structural insights.