DOI QR코드

DOI QR Code

유전율 측정을 위한 고감도 마이크로스트립 결함 접지 구조 기반 센서 설계

Design of Microstrip Defected Ground Structure-based Sensor with Enhanced-Sensitivity for Permittivity Measurement

  • 여준호 (대구대학교 정보통신공학부/정보통신연구소) ;
  • 이종익 (동서대학교 메카트로닉스융합공학부)
  • Yeo, Junho (School of Computer and Communication Engineering/Information and Communication Research Center, Daegu University) ;
  • Lee, Jong-Ig (Division of Mechatronics Engineering, Dongseo University)
  • 투고 : 2019.01.28
  • 심사 : 2019.02.25
  • 발행 : 2019.02.28

초록

본 논문에서는 평면 유전체 기판의 유전율 측정을 위해 마이크로스트립 결함 접지구조를 기반으로 한 고감도 마이크로파 센서의 설계 방법에 대하여 연구하였다. 제안된 센서는 H-모양 개구의 리지 구조를 커패시터 기호 모양으로 변형하여 설계하였다. 제안된 센서의 감도를 기존의 이중 링 상보형 분할 링 공진기를 기반으로 한 센서의 감도와 비교하였다. 두 센서는 피 시험 기판이 없는 상태에서 전송 계수가 1.5 GHz에서 공진하도록 0.76 mm 두께의 RF-35 기판 상에 설계하고 제작하였다. 피 시험 기판으로 비유 전율이 2.17에서 10.2 범위에 있는 타코닉 기판 5종을 선택하였다. 실험 결과, 전송계수 공진주파수의 이동으로 측정된 제안된 센서의 감도는 기존 이중 링 상보형 분할 링 공진기를 기반으로 한 센서와 비교할 때 1.31배에서 1.62배 증가하는 것을 확인하였다.

In this paper, a design method for an enhanced-sensitivity microwave sensor based on microstrip defected ground structure was studied for the permittivity measurement of planar dielectric substrates. The proposed sensor was designed by modifying the ridge structure of an H-shaped aperture into the shape of a capacitor symbol. The sensitivity of the proposed sensor was compared with that of a conventional sensor based on a double-ring complementary split ring resonator(DR-CSRR). Two sensors were designed and fabricated on a 0.76-mm-thick RF-35 substrate so that the transmission coefficient would resonate at 1.5 GHz in the absence of the substrate under test. Five types of taconic substrates with a relative permittivity ranging from 2.17 to 10.2 were selected asthe substrate under test. Experiment results show that the sensitivity of the proposed sensor, which is measured by the shift in the resonant frequency of the transmission coefficient, is 1.31 to 1.62 times higher than that of the conventional DR-CSRR-based sensor.

키워드

HHHHBI_2019_v23n1_69_f0001.png 이미지

그림 1. 제안된 마이크로스트립 CSS-DGS 기반 고감도 센서 구조와 S-변수 특성 Fig. 1. Geometry and S-parameter characteristics of proposed enhanced-sensitivity sensor based on microstrip CSS-DGS.

HHHHBI_2019_v23n1_69_f0002.png 이미지

그림 2. 기존의 DR-CSRR 기반 센서 구조와 S-변수 특성 Fig. 2. Geometry and S-parameter characteristics of conventional sensor based on DR-CSRR.

HHHHBI_2019_v23n1_69_f0003.png 이미지

그림 3. SUT의 비유전율 변화에 따른 두 센서의 S21 특성: (a) DR-CSRR 기반 센서, (b) CSS-DGS 기반 센서 Fig. 3. S21 characteristics of two sensors for varying relative permittivity of SUT: (a) DR-CSRR-based sensor, (b) CSS-DGS-based sensor.

HHHHBI_2019_v23n1_69_f0004.png 이미지

그림 4. 두 센서의 성능 비교: (a) 공진 주파수 이동, (b) 감도, (c) DR-CSRR 기반 센서와 비교할 때 CSS-DGS 기반 센서의 감도 향상 Fig. 4. Comparison of performances for two sensors: (a) resonant frequency shift, (b) sensitivity, (c) sensitivity enhancement of CSS-DGS-based sensor compared to DR-CSRR-based sensor.

HHHHBI_2019_v23n1_69_f0005.png 이미지

그림 5. 제작된 센서 사진: (a) DR-CSRR 기반 센서, (b) CSS-DGS 기반 센서 Fig. 5. Photographs of fabricated sensors: (a) DR-CSRRbased sensor, (b) CSS-DGS-based sensor.

HHHHBI_2019_v23n1_69_f0006.png 이미지

그림 6. 표 1의 SUT 5종에 대한 두 센서의 S21 특성: (a) DR-CSRR 기반 센서, (b) CSS-DGS 기반 센서 Fig. 6. S21 characteristics of two sensors for five SUTs in Table 1: (a) DR-CSRR-based sensor, (b) CSS-DGS-based sensor

HHHHBI_2019_v23n1_69_f0007.png 이미지

그림 7. SUT 5종에 대한 두 센서의 성능 시뮬레이션: (a) 공진 주파수 이동, (b) 감도, (c) DR-CSRR 기반 센서와 비교할 때 CSS-DGS 기반 센서의 감도 향상 Fig. 7. Simulated performances of two sensors for five SUTs: (a) resonant frequency shift, (b) sensitivity, (c) sensitivity enhancement of CSS-DGS-based sensor compared to DR-CSRR-based sensor

HHHHBI_2019_v23n1_69_f0008.png 이미지

그림 8. 측정 사진: (a) SUT가 없을 때(unloaded), (b) SUT가 있을 때(loaded) Fig. 8. Photographs of experiment: (a) without SUT(unloaded), (b) with SUT(loaded)

HHHHBI_2019_v23n1_69_f0009.png 이미지

그림 9. SUT 5종에 대한 두 센서의 측정된 S21 특성: (a) DR-CSRR 기반 센서, (b) CSS-DGS 기반 센서 Fig. 9. Measured S21 characteristics of two sensors for five SUTs: (a) DR-CSRR- based sensor, (b) CSS-DGS-based sensor

HHHHBI_2019_v23n1_69_f0010.png 이미지

그림 10. SUT 5종에 대한 두 센서의 측정된 성능 비교: (a) 공진 주파수 이동, (b) 감도, (c) DR-CSRR 기반 센서와 비교할 때 CSS-DGS 기반 센서의 감도 향상 Fig. 10. Measured performance comparison of two sensors for five SUTs: (a) resonant frequency shift, (b) sensitivity, (c) sensitivity enhancement of CSS-DGS-based sensor compared to DR-CSRR-based sensor,

표 1. SUT로 사용된 5개 taconic 기판의 비유전율, 손실탄젠트 및 두께 Table 1. Relative permittivity, loss tangent, and thickness of five taconic substrates used as SUT.

HHHHBI_2019_v23n1_69_t0001.png 이미지

참고문헌

  1. Sensors play key role in pushing industry into fourth age [Internet]. Available: http://crown.co.za/images/magazines/electricity-control/SpotOn/Sensors_play_key_role_in_pushing_industry_into_Fourth_Age.pdf.
  2. K. Saeed, M. F. Shafique, M. B. Byrne, and I. C. Hunter, Planar microwave sensors for complex permittivity characterization of materials and their applications, in Applied Measurement Systems, London, United Kingdom: IntechOpen, ch. 15, pp. 319-350, 2012.
  3. J. Baker-Jarvis, E. Vanzura, W. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Transactions on Microwave Theory and Technology, Vol. 38, No. 8, pp. 1096-1103, 1990. https://doi.org/10.1109/22.57336
  4. Z. Akhter and M. J. Akhtar, "Free-space time domain position insensitive technique for simultaneous measurement of complex permittivity and thickness of lossy dielectric samples," IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 10, pp. 2394-2405, Oct. 2016. https://doi.org/10.1109/TIM.2016.2581398
  5. T. W. Athey, M. A. Stuchly, and S. S. Stuchly, "Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part I," IEEE Transactions on Microwave Theory and Technology, Vol. 30, No. 1, pp. 82-86, Jan. 1982. https://doi.org/10.1109/TMTT.1982.1131021
  6. A. Raj, W. Holmes, and S. Judah, "Wide bandwidth measurement of complex permittivity of liquids using coplanar lines," IEEE Transactions on Instrumentation and Measurement, Vol. 50, No. 4, pp. 905-909, Aug. 2001. https://doi.org/10.1109/19.948297
  7. K. T. Mathew and U. Raveendranath, "Waveguide cavity perturbation method for measuring complex permittivity of water," Microwave and Optical Technology Letters, Vol. 6, No. 2, pp. 104-106, Feb. 1993. https://doi.org/10.1002/mop.4650060206
  8. E. Fratticciolli, M. Dionigi, and R. Sorrentino, "A simple and low-cost measurement system for the complex permittivity characterization of materials," IEEE Transactions on Microwave Theory and Technology, Vol. 53, No. 4, pp. 1071-1077, Aug. 2004.
  9. W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, "Metamaterial-based microfluidic sensor for dielectric characterization," Sensors and Actuators A: Physical, Vol. 189, pp. 233-237, Jan. 2013. https://doi.org/10.1016/j.sna.2012.10.027
  10. K. T. M. Shafi, A. K. Jha, and M. J. Akhtar, "Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials," IEEE Sensors Journal, Vol. 17, No. 17, pp. 5479-5486, Sep. 2017. https://doi.org/10.1109/JSEN.2017.2724942
  11. M. S. Boybay and O. M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 11, pp. 3039-3046, Nov. 2012. https://doi.org/10.1109/TIM.2012.2203450
  12. C.-S. Lee and C.-L. Yang, "Complementary split-ring resonators for measuring dielectric constants and loss tangents," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 8, pp. 563-565, Aug. 2014. https://doi.org/10.1109/LMWC.2014.2318900
  13. C. Li and F. Li, "Characterization and modeling of a microstrip line loaded with complementary split-ring resonators (CSRRs) and its application to highpass filters," Journal of Physics D: Applied Physics, Vol. 40, pp. 3780-3787, Jun. 2007. https://doi.org/10.1088/0022-3727/40/12/033
  14. A. Salim and S. Lim, "Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor," Sensors, Vol. 16, pp. 1802, Oct. 2016. https://doi.org/10.3390/s16111802
  15. A. Ebrahimi, J. Scott, and K. Ghorbani, "Differential sensors using microstrip lines loaded with two split ring resonators," IEEE Sensors Journal, Vol. 18, No. 14, pp. 5786-5793, May 2018. https://doi.org/10.1109/JSEN.2018.2840691
  16. Taconic PTFE laminates [Internet]. Available: http://www.taconic.co.kr/pages/sub02_03.php.