DOI QR코드

DOI QR Code

Synthesis and Optical Property of TiO2 Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Process

염 보조 초음파 분무 열분해법을 이용한 TiO2 나노입자의 합성 및 광학적 성질

  • Ji, Myeong-Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Woo-Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Yoo, Jae-Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 지명준 (서울과학기술대학교 신소재공학과) ;
  • 박우영 (서울과학기술대학교 신소재공학과) ;
  • 유재현 (서울과학기술대학교 신소재공학과) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Received : 2019.01.31
  • Accepted : 2019.02.22
  • Published : 2019.02.28

Abstract

Current synthesis processes for titanium dioxide ($TiO_2$) nanoparticles require expensive precursors or templates as well as complex steps and long reaction times. In addition, these processes produce highly agglomerated nanoparticles. In this study, we demonstrate a simple and continuous approach to synthesize $TiO_2$ nanoparticles by a salt-assisted ultrasonic spray pyrolysis method. We also investigate the effect of salt content in a precursor solution on the morphology and size of synthesized products. The synthesized $TiO_2$ nanoparticles are systematically characterized by X-ray diffraction, transmission electron micrograph, and UV-Vis spectroscopy. These nanoparticles appear to have a single anatase phase and a uniform particle-size distribution with an average particle size of approximately 10 nm. By extrapolating the plots of the transformed Kubelka-Munk function versus the absorbed light energy, we determine that the energy band gap of the synthesized $TiO_2$ nanoparticles is 3.25 eV.

Keywords

References

  1. X. Chen and S. S. Mao: Chem. Rev., 107 (2007) 2891. https://doi.org/10.1021/cr0500535
  2. Y. Cai and Y. P. Feng: Prog. Surf. Sci., 91 (2016) 183. https://doi.org/10.1016/j.progsurf.2016.11.001
  3. J.-S. Lee, Y.-I. Lee, H. Song, D.-H. Jang and Y.-H. Choa: Curr. Appl Phys., 11 (2011) S210. https://doi.org/10.1016/j.cap.2010.11.115
  4. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han and C. Li: Chem. Rev., 114 (2014) 9987. https://doi.org/10.1021/cr500008u
  5. M. Tahir and N. S. Amin: Appl. Catal. B, 162 (2015) 98. https://doi.org/10.1016/j.apcatb.2014.06.037
  6. Y.-I. Lee, J.-S. Lee, E.-S. Park, D.-H. Jang, J.-E. Lee, K. Kim, N. V. Myung and Y.-H. Choa: J. Nanosci. Nanotechnol., 14 (2014) 8005. https://doi.org/10.1166/jnn.2014.9445
  7. W. Li, F. Wang, S. Feng, J. Wang, Z. Sun, B. Li, Y. Li, J. Yang, A. A. Elzatahry, Y. Xia and D. Zhao: J. Am. Chem. Soc., 135 (2013) 18300. https://doi.org/10.1021/ja4100723
  8. R. Thapa, S. Maiti, T. H. Rana, U. N. Maiti and K. K. Chattopadhyay: J. Mol. Catal. A: Chem., 363-364 (2012) 223. https://doi.org/10.1016/j.molcata.2012.06.013
  9. Q. Qu, H. Geng, R. Peng, Q. Cui, X. Gu, F. Li and M. Wang: Langmuir, 26 (2010) 9539. https://doi.org/10.1021/la100121n
  10. G. L. Messing, S.C. Zhang and G. V. Jayanthi: J. Am. Ceram. Soc., 76 (1993) 2707. https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
  11. J. H. Bang and K. S. Suslick: Adv. Mater., 22 (2010) 1039. https://doi.org/10.1002/adma.200904093
  12. Z. Cheng, P. Foroughi and A. Behrens: Ceram. Int., 43 (2017) 3431. https://doi.org/10.1016/j.ceramint.2016.11.177
  13. G.-H. An, H.-J. Wang, B.-H. Kim, Y.-G. Jeong and Y.-H. Choa: Mater. Sci. Eng. A, 449-451 (2007) 821. https://doi.org/10.1016/j.msea.2006.02.436
  14. Y.-M. Choi, Y.-I. Lee, S. Kim and Y.-H. Choa: J. Alloy Compd., 615 (2014) 496. https://doi.org/10.1016/j.jallcom.2014.06.174
  15. Y. Hwangbo and Y.-I. Lee: J. Alloy Compd., 771 (2019) 821. https://doi.org/10.1016/j.jallcom.2018.08.308