DOI QR코드

DOI QR Code

Fabrication and Characterization of Hexagonal Tungsten Oxide Nanopowders for High Performance Gas Sensing Application

육방정계 텅스텐옥사이드 나노분말의 합성과 고성능 가스센서응용을 위한 성능 평가

  • Park, Jinsoo (Department of Advanced Aerospace Materials Engineering, Kyungwoon University)
  • 박진수 (경운대학교 항공신소재공학과)
  • Received : 2019.02.01
  • Accepted : 2019.02.26
  • Published : 2019.02.28

Abstract

The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and $O_3$ because of their high sensitivity, high response and high stability. Tungsten oxides ($WO_3$) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of $WO_3$. Nanosize $WO_3$ are synthesized using the hydrothermal method. As-prepared $WO_3$ nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze ($MxWO_3$, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that $WO_3$ can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of $WO_3$.

Keywords

References

  1. P. P. Gonzalez-Borrero, F. Sato, A. N. Medina, M. L. Baesso, A. C. Bento, G. Baldissera, C. Persson, G. A. Niklasson, C. G. Granqvist and A. F. da Silva: Appl. Phys. Lett., 96 (2010) 061909. https://doi.org/10.1063/1.3313945
  2. M. Gratzel: Nature, 414 (2001) 338. https://doi.org/10.1038/35104607
  3. C. Santato, M. Odziemkowski, M. Ulmann and J. Augustynski:. J. Am. Chem. Soc., 123 (2001) 10639. https://doi.org/10.1021/ja011315x
  4. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang and H. Ning: Sensors, 12 (2012) 9635. https://doi.org/10.3390/s120709635
  5. S. Lakkis, R. Younes, Y. Alayli and M. Sawan: Sensor Rev., 34 (2014) 24. https://doi.org/10.1108/SR-11-2012-724
  6. T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani: Anal. Chem., 34 (1962) 1502. https://doi.org/10.1021/ac60191a001
  7. P. J. Shaver: Appl. Phys. Lett., 11 (1967) 255. https://doi.org/10.1063/1.1755123
  8. T. Yang, Y. Zhang, Y. Cai and H. Tian: J. Mater. Res., 29 (2014) 166. https://doi.org/10.1557/jmr.2013.369
  9. A.M. Azad and M. Hammoud: Sens. Actuators, B, 119 (2006) 384. https://doi.org/10.1016/j.snb.2005.12.043
  10. J.-Y. Leng, X.-J. Xu, N. Lv, H.-T. Fan and T. Zhang: J. Colloid Interface Sci., 356 (2011) 54. https://doi.org/10.1016/j.jcis.2010.11.079
  11. E. P. S. Barrett, G. C. Georgiades and P. A. Sermon: Sens. Actuators, B, 1 (1990) 116. https://doi.org/10.1016/0925-4005(90)80184-2
  12. M. Akiyama, J. Tamaki, N. Miura and N. Yamazoe: Chem. Lett., 20 (1991) 1611. https://doi.org/10.1246/cl.1991.1611
  13. M. Righettoni, A. Tricoli and S. E. Pratsinis: Anal. Chem., 82 (2010) 3581. https://doi.org/10.1021/ac902695n
  14. S.-J. Kim, S.-J. Choi, J.-S. Jang, N.-H. Kim, M. Hakim, H. L. Tuller and I.-D. Kim: ACS Nano, 10 (2016) 5891. https://doi.org/10.1021/acsnano.6b01196
  15. L. Wang, A. Teleki, S. E. Pratsinis and P. I. Gouma: Chem. Mater., 20 (2008) 4794. https://doi.org/10.1021/cm800761e
  16. X.-L. Li, T.-J. Lou, X.-M. Sun and Y.-D. Li: Inorg. Chem., 43 (2004) 5442. https://doi.org/10.1021/ic049522w
  17. A. Labidi , E. Gillet, R. Delamare, M. Maaref and K. Aguir: Sens. Actuators, B, 120 (2006) 338. https://doi.org/10.1016/j.snb.2006.02.015
  18. A. K. Nayak, R. Ghosh, S. Santra, P. K. Guha and D. Pradhan: Nanoscale, 7 (2015) 12460. https://doi.org/10.1039/C5NR02571K
  19. B. Miao, W. Zeng, Y. Mu, W. Yu, S. Hussain, S. Xu, H. Zhang and T. Li: Appl. Surf. Sci., 349 (2015) 380. https://doi.org/10.1016/j.apsusc.2015.04.226
  20. S. Vallejos, I. Gracia, E. Figueras, and C. Cane: ACS Appl. Mater. Interfaces, 7 (2015) 18638. https://doi.org/10.1021/acsami.5b05081
  21. N.-H. Kim, S.-J. Choi, D.-J. Yang, J. Bae, J. Park and I.-D. Kim: Sens. Actuators, B, 193 (2014) 574. https://doi.org/10.1016/j.snb.2013.12.011
  22. V. E. Henrich and P.A. Cox: The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, UK (1994) 384.
  23. C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao: Sensors, 10 (2010) 2088. https://doi.org/10.3390/s100302088
  24. S. R. Morrison: Sensors and Actuators, 11 (1987) 283. https://doi.org/10.1016/0250-6874(87)80007-0
  25. J. Qin, Y. Xing and G. Zhang: J. Am. Ceram. Soc., 96 (2013) 1617. https://doi.org/10.1111/jace.12173
  26. I. M. Szilagyi, J. M.adarasz, G. Pokol, P. Kiraly, G. Tarkanyi, S. Saukko, J. Mizsei, A. L. Toth, A. Szabo and K. Varga-Josepovits: Chem. Mater., 20 (2008) 4116. https://doi.org/10.1021/cm800668x
  27. M. Takacs, Cs. Ducso, Z. Labadia and A.E. Pap: Procedia Eng., 87 (2014) 1011. https://doi.org/10.1016/j.proeng.2014.11.331
  28. L. Wang, J. Pfeifer, C. Balazsi and P. I. Gouma: Mater. Manuf. Processes, 22 (2007) 773. https://doi.org/10.1080/10426910701385440
  29. Z. Gu, T. Zhai, B. Gao, X. Sheng, Y. Wang, H. Fu, Y. Ma and J. Yao: J. Phys. Chem. B, 110 (2006) 23829. https://doi.org/10.1021/jp065170y
  30. A. Hussain, L. Kihlborg and A. Klug: J. Solid State Chem., 25 (1978) 189. https://doi.org/10.1016/0022-4596(78)90102-0
  31. H. Watanabe, K. Fujikat, Y. Oakib and H. Imai: Chem. Commun., 49 (2013) 8477. https://doi.org/10.1039/c3cc44264k
  32. K. Jothivenkatachalam, S. Prabhu, A. Nithya and K. Jeganathan: RSC Adv., 4 (2014) 21221. https://doi.org/10.1039/C4RA01376J
  33. G. Zhang, K. Lu, X. Zhang, W. Yuan, M. Shi, H. Ning, R. Tao, X. Liu, R. Yao and J. Peng: Micromachines, 9 (2018) 377. https://doi.org/10.3390/mi9080377