DOI QR코드

DOI QR Code

Reflectance Characteristics of Al-Si based Alloys according to Powder Size and Composition

Al-Si계 합금의 분말 크기 및 조성에 따른 반사율 변화 특성

  • Choi, Gwang Mook (Center for Advanced Materials and Processing, Institute for Advanced Engineering) ;
  • Chae, Hong Jun (Center for Advanced Materials and Processing, Institute for Advanced Engineering)
  • 최광묵 (고등기술연구원 신소재공정센터) ;
  • 채홍준 (고등기술연구원 신소재공정센터)
  • Received : 2019.02.11
  • Accepted : 2019.02.19
  • Published : 2019.02.28

Abstract

In this study, the effects of powder size and composition on the reflectance of Al-Si based alloys are presented. First, the reflectance of Al-Si bulk and powder are analyzed to confirm the effect of powder size. Results show that the bulk has a higher reflectance than that of powder because the bulk has lower surface defects. In addition, the larger the particle size, the higher is the reflectance because the interparticle space decreases. Second, the effect of composition on the reflectance by the changing composition of Al-Si-Mg is confirmed. Consequently, the reflectance of the alloy decreases with the addition of Si and Mg because dendrite Si and $Mg_2Si$ are formed, and these have lower reflectance than pure Al. Finally, the reflectance of the alloy is due to the scattering of free electrons, which is closely related to electrical conductivity. Measurements of the electrical conductivity based on the composition of the Al-Si-Mg alloy confirm the same tendency as the reflectance.

Keywords

References

  1. J. J. Lewandowski and M. Seifi: Annu. Rev. Mater. Res., 46 (2016) 151. https://doi.org/10.1146/annurev-matsci-070115-032024
  2. W. E. Frazier: J. Mater. Eng. Perform., 23 (2014) 1917. https://doi.org/10.1007/s11665-014-0958-z
  3. F. R. Collins and J. H. Dudas: Weld. J., 45 (1966) 241.
  4. N. Kaufmann, M. Imranb, T. M. Wischeropp, C. Emmelmann, S. Siddique and F. Walther: Phys. Procedia, 83 (2016) 918. https://doi.org/10.1016/j.phpro.2016.08.096
  5. J. R. Davis: Alloying: Understanding the Basics, ASM International, Ohio, USA (1993) 351.
  6. W. D. Callister, Jr.: Materials Science and Engineering: An Introduction, 7th ed., John Wiley & Sons, New York (2007) 5.
  7. J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler and T. M. Pollock: Nature, 549 (2017) 365. https://doi.org/10.1038/nature23894
  8. D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. P. Ambrosio, S. Biamino, D. Ugues, M. Pavese and P. Fino: Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs), INTECH, Inc., London (2014) 3.
  9. M.N. Ervina Efzan, H. J. Kong and C. K. Kok: Adv. Mater. Res., 845 (2014) 355. https://doi.org/10.4028/www.scientific.net/AMR.845.355
  10. C. H. Caceres, C. J. Davidson, J. R. Griffiths and Q. G. Wang: Metall. Mater. Trans. A, 30 (1999) 2611. https://doi.org/10.1007/s11661-999-0301-8
  11. H. R. Ammar, C. Moreau, A. M. Samuel, F. H. Samuel and H. W. Doty: Mater. Sci. Eng. A, 489 (2008) 426. https://doi.org/10.1016/j.msea.2007.12.032
  12. M. Shamsuzzoha, L. M. Hogan, D. J. Smith and P. A. Deymier: J. Cryst. Growth, 112 (1991) 635. https://doi.org/10.1016/0022-0248(91)90119-P
  13. N.D. Mermin and N. W. Ashcroft: Solid state physics, Holt, Rinehart and Winston, New York (1976) 671.
  14. M. G. Blaber, M. D. Arnold and M. J. Ford: J. Phys. Chem. C, 113 (2009) 3041. https://doi.org/10.1021/jp810808h
  15. M. H. Mulazimoglu, R. A. L. Drew and J. E. Gruzleski: Metall. Trans. A, 20 (1989) 383. https://doi.org/10.1007/BF02653917