DOI QR코드

DOI QR Code

그래핀 원스텝 전사(Graphene One-Step Transfer) 공정 기반 다층 그래핀 잔여분말 제거 기술 연구

A Study on Residual Powder Removing Technique of Multi-Layered Graphene Based on Graphene One-Step Transfer Process

  • 우채영 (부산대학교 나노융합기술학과) ;
  • 조영수 (부산대학교 에너지융합기술연구소) ;
  • 홍순규 (부산대학교 나노융합기술학과) ;
  • 이형우 (부산대학교 나노융합기술학과)
  • Woo, Chae-young (Department of Nano Fusion Technology, Pusan National University) ;
  • Jo, Yeongsu (Research Center of Energy Convergence Technology, Pusan National University) ;
  • Hong, Soon-kyu (Department of Nano Fusion Technology, Pusan National University) ;
  • Lee, Hyung Woo (Department of Nano Fusion Technology, Pusan National University)
  • 투고 : 2019.01.17
  • 심사 : 2019.01.31
  • 발행 : 2019.02.28

초록

In this study, a method to remove residual powder on a multi-layered graphene and a new approach to transfer multi-layered graphene at once are studied. A graphene one-step transfer (GOST) method is conducted to minimize the residual powder comparison with a layer-by-layer transfer. Furthermore, a residual powder removing process is investigated to remove residual powder at the top of a multi-layered graphene. After residual powder is removed, the sheet resistance of graphene is decreased from 393 to 340 Ohm/sq in a four-layered graphene. In addition, transmittance slightly increases after residual powder is removed from the top of the multi-layered graphene. Optical and atomic-force microscopy images are used to analyze the graphene surface, and the Ra value is reduced from 5.2 to 3.7 nm following residual powder removal. Therefore, GOST and residual powder removal resolve the limited application of graphene electrodes due to residual powder.

키워드

참고문헌

  1. S. K. Hong and H. W. Lee: J. Korean Powder Metall. Inst., 24 (2017) 248. https://doi.org/10.4150/KPMI.2017.24.3.248
  2. A. K. Geim: Science, 324 (2009) 1530. https://doi.org/10.1126/science.1158877
  3. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff: Science, 324 (2009) 1312. https://doi.org/10.1126/science.1171245
  4. Z. S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang and H. M. Cheng: ACS Nano, 3 (2009) 411. https://doi.org/10.1021/nn900020u
  5. X. Liu, C. Z. Wang, M. Hupalo, H. Q. Lin, K. M. Ho and M. C. Tringides: Crystals, 3 (2013) 79. https://doi.org/10.3390/cryst3010079
  6. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong: Nature, 457 (2009) 706. https://doi.org/10.1038/nature07719
  7. F. Xia, D. B. Farmer, Y. M. Lin and P. Avouris: Nano Lett., 10 (2010) 715. https://doi.org/10.1021/nl9039636
  8. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim: Appl. Phys. Lett., 91 (2007) 91.
  9. D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace: Nature Nanotech., 3 (2008) 101. https://doi.org/10.1038/nnano.2007.451
  10. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong: Nano Lett., 9 (2009) 30. https://doi.org/10.1021/nl801827v
  11. P. R. Kidambi, B. C. Bayer, R. Blume, Z. J. Wang, C. Baehtz, R. S. Weatherup, M. G. Willinger, R. Schloegl and S. Hofmann: Nano Lett., 13 (2013) 4769. https://doi.org/10.1021/nl4023572
  12. J. Kang, D. Shin, S. Bae and B. H. Hong: Nanoscale, 4 (2012) 5527. https://doi.org/10.1039/c2nr31317k
  13. B. H. Son, H. S. Kim, H. Jeong, J. Y. Park, S. Lee and Y. H. Ahn: Sci. Rep., 7 (2017) 18058. https://doi.org/10.1038/s41598-017-18444-1
  14. H. Park, P. R. Brown, V. Bulovic, and J. Kong: Nano Lett., 12 (2012) 133. https://doi.org/10.1021/nl2029859
  15. T. Uwanno, Y. Hattori, T. Taniguchi, K. Watanabe and K. Nagashio: 2D Materials, 2 (2015) 1. https://doi.org/10.3934/matersci.2015.1.1
  16. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito: Nano Lett., 10 (2010) 751. https://doi.org/10.1021/nl904286r
  17. F. M. Smits: Bell System Technical Journal, 37 (1958) 711. https://doi.org/10.1002/j.1538-7305.1958.tb03883.x
  18. L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus: Phys. Rep., 473 (2009) 51. https://doi.org/10.1016/j.physrep.2009.02.003