DOI QR코드

DOI QR Code

Crystal Structure and Functional Characterization of a Xylose Isomerase (PbXI) from the Psychrophilic Soil Microorganism, Paenibacillus sp.

  • Park, Sun-Ha (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Kwon, Sunghark (College of Pharmacy, Chung-Ang University) ;
  • Lee, Chang Woo (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Kim, Chang Min (College of Pharmacy, Chung-Ang University) ;
  • Jeong, Chang Sook (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Kim, Kyung-Jin (School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University) ;
  • Hong, Jong Wook (Department of Bionanotechnology, Graduate School, Hanyang University) ;
  • Kim, Hak Jun (Department of Chemistry, Pukyong National University) ;
  • Park, Hyun Ho (College of Pharmacy, Chung-Ang University) ;
  • Lee, Jun Hyuck (Unit of Polar Genomics, Korea Polar Research Institute)
  • Received : 2018.07.02
  • Accepted : 2018.09.15
  • Published : 2019.02.28

Abstract

Xylose isomerase (XI; E.C. 5.3.1.5) catalyzes the isomerization of xylose to xylulose, which can be used to produce bioethanol through fermentation. Therefore, XI has recently gained attention as a key catalyst in the bioenergy industry. Here, we identified, purified, and characterized a XI (PbXI) from the psychrophilic soil microorganism, Paenibacillus sp. R4. Surprisingly, activity assay results showed that PbXI is not a cold-active enzyme, but displays optimal activity at $60^{\circ}C$. We solved the crystal structure of PbXI at $1.94-{\AA}$ resolution to investigate the origin of its thermostability. The PbXI structure shows a $({\beta}/{\alpha})_8$-barrel fold with tight tetrameric interactions and it has three divalent metal ions (CaI, CaII, and CaIII). Two metal ions (CaI and CaII) located in the active site are known to be involved in the enzymatic reaction. The third metal ion (CaIII), located near the ${\beta}4-{\alpha}6$ loop region, was newly identified and is thought to be important for the stability of PbXI. Compared with previously determined thermostable and mesophilic XI structures, the ${\beta}1-{\alpha}2$ loop structures near the substrate binding pocket of PbXI were remarkably different. Site-directed mutagenesis studies suggested that the flexible ${\beta}1-{\alpha}2$ loop region is essential for PbXI activity. Our findings provide valuable insights that can be applied in protein engineering to generate low-temperature purpose-specific XI enzymes.

Keywords

References

  1. Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, et al. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  2. Chiang L-C, Gong C-S, Chen L-F, Tsao GT. 1981. D-Xylulose fermentation to ethanol by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 42: 284-289. https://doi.org/10.1128/AEM.42.2.284-289.1981
  3. Chandrakant P, Bisaria V. 2000. Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase. Appl. Microbiol. Biotechnol. 53: 301-309. https://doi.org/10.1007/s002530050025
  4. Gong C-S, Chen L-F, Flickinger MC, Chiang L-C, Tsao GT. 1981. Production of ethanol from $\small{D}$-xylose by using $\small{D}$-xylose isomerase and yeasts. Appl. Environ. Microbiol. 41: 430-436. https://doi.org/10.1128/AEM.41.2.430-436.1981
  5. Zhou H, Cheng J-S, Wang BL, Fink GR, Stephanopoulos G. 2012. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabol. Eng. 14: 611-622. https://doi.org/10.1016/j.ymben.2012.07.011
  6. Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, et al. 2009. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 82: 1067-1068. https://doi.org/10.1007/s00253-008-1794-6
  7. Moes CJ, Pretorius IS, van Zyl WH. 1996 . Cloning and expression of the Clostridium thermosulfurogenes $\small{D}$-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol. Lett. 18: 269-274. https://doi.org/10.1007/BF00142943
  8. Sarthy A, McConaughy B, Lobo Z, Sundstrom J, Furlong C, Hall B. 1987. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 53: 1996-2000. https://doi.org/10.1128/AEM.53.9.1996-2000.1987
  9. Kristo P, Saarelainen R, Fagerström R, Aho S, Korhola M. 1996. Protein purification, and cloning and characterization of the cDNA and gene for xylose isomerase of barley. Eur. J. Biochem. 237: 240-246. https://doi.org/10.1111/j.1432-1033.1996.0240n.x
  10. Umemoto Y, Shibata T, Araki T. 2012. $\small{D}$-xylose isomerase from a marine bacterium, Vibrio sp. strain XY-214, and $\small{D}$-xylulose production from ${\beta}-1$, 3-xylan. Marine Biotechnol. 14: 10-20. https://doi.org/10.1007/s10126-011-9380-9
  11. Son H, Lee S-M, Kim K-J. 2018. Crystal structure and biochemical characterization of xylose isomerase from Piromyces sp. E2. J. Microbiol. Biotechnol. 28: 571-578. https://doi.org/10.4014/jmb.1711.11026
  12. Dekker K, Yamagata H, Sakaguchi K, Udaka S. 1991. Xylose (glucose) isomerase gene from the thermophile Thermus thermophilus: cloning, sequencing, and comparison with other thermostable xylose isomerases. J. Bacteriol. 173: 3078-3083. https://doi.org/10.1128/jb.173.10.3078-3083.1991
  13. Park J-H, Batt CA. 2004. Restoration of a defective Lactococcus lactis xylose isomerase. Appl. Environ. Microbiol. 70: 4318-4325. https://doi.org/10.1128/AEM.70.7.4318-4325.2004
  14. Kovalevsky AY, Hanson L, Fisher SZ, Mustyakimov M, Mason SA, Forsyth VT, et al. 2010. Metal ion roles and the movement of hydrogen during reaction catalyzed by $\small{D}$-xylose isomerase: a joint x-ray and neutron diffraction study. Structure 18: 688-699. https://doi.org/10.1016/j.str.2010.03.011
  15. Chang C, Park BC, Lee D-S, Suh SW. 1999. Crystal structures of thermostable xylose isomerases from Thermus caldophilus and Thermus thermophilus: possible structural determinants of thermostability. J. Mol. Biol. 288: 623-634. https://doi.org/10.1006/jmbi.1999.2696
  16. Allen KN, Lavie A, Glasfeld A, Tanada TN, Gerrity DP, Carlson SC, et al. 1994. Role of the divalent metal ion in sugar binding, ring opening, and isomerization by $\small{D}$-xylose isomerase: replacement of a catalytic metal by an amino acid. Biochemistry 33: 1488-1494. https://doi.org/10.1021/bi00172a027
  17. Bae J-E, Hwang KY, Nam KH. 2018. Structural analysis of substrate recognition by glucose isomerase in $Mn^{2+}$ binding mode at M2 site in S. rubiginosus. Biochem. Biophys. Res. Commun. 503: 770-775. https://doi.org/10.1016/j.bbrc.2018.06.074
  18. Toteva MM, Silvaggi NR, Allen KN, Richard JP. 2011. Binding energy and catalysis by $\small{D}$-xylose isomerase: kinetic, product, and X-ray crystallographic analysis of enzyme-catalyzed isomerization of (R)-glyceraldehyde. Biochemistry 50: 10170-10181. https://doi.org/10.1021/bi201378c
  19. Carrell H, Rubin BH, Hurley TJ, Glusker JP. 1984. X-ray crystal structure of $\small{D}$-xylose isomerase at 4-A resolution. J. Biol. Chem. 259: 3230-3236. https://doi.org/10.1016/S0021-9258(17)43285-6
  20. Jenkins J, Janin J, Rey F, Chiadmi M, Van Tilbeurgh H, Lasters I, et al. 1992. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry 31: 5449-5458. https://doi.org/10.1021/bi00139a005
  21. Han B, Bong SM, Cho J, Kim M, Kim SJ, Lee BI. 2015. Crystal structure of a Class 2 $\small{D}$-xylose isomerase from the human intestinal tract microbe Bacteroides thetaiotaomicron. Biodesign 289: 41-47.
  22. Lee M, Rozeboom HtJ, de Waal PP, de Jong RM, Dudek HM, Janssen DB. 2017. Metal dependence of the xylose isomerase from Piromyces sp. E2 explored by activity profiling and protein crystallography. Biochemistry 56: 5991-6005. https://doi.org/10.1021/acs.biochem.7b00777
  23. Lee C, Bagdasarian M, Meng M, Zeikus J. 1990. Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidine. J. Biol. Chem. 265: 19082-19090. https://doi.org/10.1016/S0021-9258(17)30628-2
  24. Isaksen GV, Åqvist J, Brandsdal BO. 2014. Protein surface softness is the origin of enzyme cold-adaptation of trypsin. PLoS Comput. Biol. 10: e1003813. https://doi.org/10.1371/journal.pcbi.1003813
  25. Papaleo E, Pasi M, Riccardi L, Sambi I, Fantucci P, Gioia LD. 2008. Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases. FEBS Lett. 582: 1008-1018. https://doi.org/10.1016/j.febslet.2008.02.048
  26. Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. 2016. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front. Microbiol. 7: 1408.
  27. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13: 253-261. https://doi.org/10.1016/S0958-1669(02)00317-8
  28. Joseph B, Ramteke PW, Thomas G, Shrivastava N. 2007. Cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol. Mol. Biol. Rev. 2: 39-48.
  29. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. 2013. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42: D206-D214. https://doi.org/10.1093/nar/gkt1226
  30. Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  31. Vagin A, Teplyakov A. 1997. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30: 1022-1025. https://doi.org/10.1107/S0021889897006766
  32. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. 2011. Overview of the CCP4 suite and current developments. Acta Crystallographica Section Biol. Crystallogr. 67: 235-242. https://doi.org/10.1107/S0907444910045749
  33. Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132. https://doi.org/10.1107/S0907444904019158
  34. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67: 355-367. https://doi.org/10.1107/S0907444911001314
  35. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66: 12-21. https://doi.org/10.1107/S0907444909042073
  36. Holm L, Rosenström P. 2010. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38: W545-W549. https://doi.org/10.1093/nar/gkq366
  37. Vieille C, Epting KL, Kelly RM, Zeikus JG. 2001. Bivalent cations and amino-acid composition contribute to the thermostability of Bacillus licheniformis xylose isomerase. Eur. J. Biochem. 268: 6291-6301. https://doi.org/10.1046/j.0014-2956.2001.02587.x
  38. Sriprapundh D, Vieille C, Zeikus JG. 2000. Molecular determinants of xylose isomerase thermal stability and activity: analysis of thermozymes by site-directed mutagenesis. Protein Eng. 13: 259-265. https://doi.org/10.1093/protein/13.4.259
  39. Vieille C, Hess JM, Kelly RM, Zeikus JG. 1995. xylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana. Appl. Environ. Microbiol. 61: 1867-1875. https://doi.org/10.1128/AEM.61.5.1867-1875.1995
  40. Sugiyama S, Maruyama M, Sazaki G, Hirose M, Adachi H, Takano K, et al. 2012. Growth of protein crystals in hydrogels prevents osmotic shock. J. Am. Chem. Soc. 134: 5786-5789. https://doi.org/10.1021/ja301584y
  41. Lavie A, Allen KN, Petsko GA, Ringe D. 1994. X-ray crystallographic structures of $\small{D}$-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Biochemistry 33: 5469-5480. https://doi.org/10.1021/bi00184a016
  42. Zhu X-Y, Teng Mk, Niu L-W, Xu C, Wang Y-Z. 2000. Structure of xylose isomerase from Streptomyces diastaticus No. 7 strain M1033 at $1.8 5\;{\AA}$resolution. Acta Crystallogr. D Biol. Crystallogr. 56: 129-136. https://doi.org/10.1107/S0907444999015097

Cited by

  1. Expression, Characterization and Its Deinking Potential of a Thermostable Xylanase From Planomicrobium glaciei CHR43 vol.9, 2019, https://doi.org/10.3389/fbioe.2021.618979
  2. Crystal structure of a novel putative sugar isomerase from the psychrophilic bacterium Paenibacillus sp. R4 vol.585, 2021, https://doi.org/10.1016/j.bbrc.2021.11.026
  3. Glucose Isomerase: Functions, Structures, and Applications vol.12, pp.1, 2022, https://doi.org/10.3390/app12010428