References
- Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, et al. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
- Chiang L-C, Gong C-S, Chen L-F, Tsao GT. 1981. D-Xylulose fermentation to ethanol by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 42: 284-289. https://doi.org/10.1128/AEM.42.2.284-289.1981
- Chandrakant P, Bisaria V. 2000. Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase. Appl. Microbiol. Biotechnol. 53: 301-309. https://doi.org/10.1007/s002530050025
-
Gong C-S, Chen L-F, Flickinger MC, Chiang L-C, Tsao GT. 1981. Production of ethanol from
$\small{D}$ -xylose by using$\small{D}$ -xylose isomerase and yeasts. Appl. Environ. Microbiol. 41: 430-436. https://doi.org/10.1128/AEM.41.2.430-436.1981 - Zhou H, Cheng J-S, Wang BL, Fink GR, Stephanopoulos G. 2012. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabol. Eng. 14: 611-622. https://doi.org/10.1016/j.ymben.2012.07.011
- Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, et al. 2009. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 82: 1067-1068. https://doi.org/10.1007/s00253-008-1794-6
-
Moes CJ, Pretorius IS, van Zyl WH. 1996 . Cloning and expression of the Clostridium thermosulfurogenes
$\small{D}$ -xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol. Lett. 18: 269-274. https://doi.org/10.1007/BF00142943 - Sarthy A, McConaughy B, Lobo Z, Sundstrom J, Furlong C, Hall B. 1987. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 53: 1996-2000. https://doi.org/10.1128/AEM.53.9.1996-2000.1987
- Kristo P, Saarelainen R, Fagerström R, Aho S, Korhola M. 1996. Protein purification, and cloning and characterization of the cDNA and gene for xylose isomerase of barley. Eur. J. Biochem. 237: 240-246. https://doi.org/10.1111/j.1432-1033.1996.0240n.x
-
Umemoto Y, Shibata T, Araki T. 2012.
$\small{D}$ -xylose isomerase from a marine bacterium, Vibrio sp. strain XY-214, and$\small{D}$ -xylulose production from${\beta}-1$ , 3-xylan. Marine Biotechnol. 14: 10-20. https://doi.org/10.1007/s10126-011-9380-9 - Son H, Lee S-M, Kim K-J. 2018. Crystal structure and biochemical characterization of xylose isomerase from Piromyces sp. E2. J. Microbiol. Biotechnol. 28: 571-578. https://doi.org/10.4014/jmb.1711.11026
- Dekker K, Yamagata H, Sakaguchi K, Udaka S. 1991. Xylose (glucose) isomerase gene from the thermophile Thermus thermophilus: cloning, sequencing, and comparison with other thermostable xylose isomerases. J. Bacteriol. 173: 3078-3083. https://doi.org/10.1128/jb.173.10.3078-3083.1991
- Park J-H, Batt CA. 2004. Restoration of a defective Lactococcus lactis xylose isomerase. Appl. Environ. Microbiol. 70: 4318-4325. https://doi.org/10.1128/AEM.70.7.4318-4325.2004
-
Kovalevsky AY, Hanson L, Fisher SZ, Mustyakimov M, Mason SA, Forsyth VT, et al. 2010. Metal ion roles and the movement of hydrogen during reaction catalyzed by
$\small{D}$ -xylose isomerase: a joint x-ray and neutron diffraction study. Structure 18: 688-699. https://doi.org/10.1016/j.str.2010.03.011 - Chang C, Park BC, Lee D-S, Suh SW. 1999. Crystal structures of thermostable xylose isomerases from Thermus caldophilus and Thermus thermophilus: possible structural determinants of thermostability. J. Mol. Biol. 288: 623-634. https://doi.org/10.1006/jmbi.1999.2696
-
Allen KN, Lavie A, Glasfeld A, Tanada TN, Gerrity DP, Carlson SC, et al. 1994. Role of the divalent metal ion in sugar binding, ring opening, and isomerization by
$\small{D}$ -xylose isomerase: replacement of a catalytic metal by an amino acid. Biochemistry 33: 1488-1494. https://doi.org/10.1021/bi00172a027 -
Bae J-E, Hwang KY, Nam KH. 2018. Structural analysis of substrate recognition by glucose isomerase in
$Mn^{2+}$ binding mode at M2 site in S. rubiginosus. Biochem. Biophys. Res. Commun. 503: 770-775. https://doi.org/10.1016/j.bbrc.2018.06.074 -
Toteva MM, Silvaggi NR, Allen KN, Richard JP. 2011. Binding energy and catalysis by
$\small{D}$ -xylose isomerase: kinetic, product, and X-ray crystallographic analysis of enzyme-catalyzed isomerization of (R)-glyceraldehyde. Biochemistry 50: 10170-10181. https://doi.org/10.1021/bi201378c -
Carrell H, Rubin BH, Hurley TJ, Glusker JP. 1984. X-ray crystal structure of
$\small{D}$ -xylose isomerase at 4-A resolution. J. Biol. Chem. 259: 3230-3236. https://doi.org/10.1016/S0021-9258(17)43285-6 - Jenkins J, Janin J, Rey F, Chiadmi M, Van Tilbeurgh H, Lasters I, et al. 1992. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry 31: 5449-5458. https://doi.org/10.1021/bi00139a005
-
Han B, Bong SM, Cho J, Kim M, Kim SJ, Lee BI. 2015. Crystal structure of a Class 2
$\small{D}$ -xylose isomerase from the human intestinal tract microbe Bacteroides thetaiotaomicron. Biodesign 289: 41-47. - Lee M, Rozeboom HtJ, de Waal PP, de Jong RM, Dudek HM, Janssen DB. 2017. Metal dependence of the xylose isomerase from Piromyces sp. E2 explored by activity profiling and protein crystallography. Biochemistry 56: 5991-6005. https://doi.org/10.1021/acs.biochem.7b00777
- Lee C, Bagdasarian M, Meng M, Zeikus J. 1990. Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidine. J. Biol. Chem. 265: 19082-19090. https://doi.org/10.1016/S0021-9258(17)30628-2
- Isaksen GV, Åqvist J, Brandsdal BO. 2014. Protein surface softness is the origin of enzyme cold-adaptation of trypsin. PLoS Comput. Biol. 10: e1003813. https://doi.org/10.1371/journal.pcbi.1003813
- Papaleo E, Pasi M, Riccardi L, Sambi I, Fantucci P, Gioia LD. 2008. Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases. FEBS Lett. 582: 1008-1018. https://doi.org/10.1016/j.febslet.2008.02.048
- Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. 2016. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front. Microbiol. 7: 1408.
- Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13: 253-261. https://doi.org/10.1016/S0958-1669(02)00317-8
- Joseph B, Ramteke PW, Thomas G, Shrivastava N. 2007. Cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol. Mol. Biol. Rev. 2: 39-48.
- Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. 2013. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42: D206-D214. https://doi.org/10.1093/nar/gkt1226
- Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
- Vagin A, Teplyakov A. 1997. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30: 1022-1025. https://doi.org/10.1107/S0021889897006766
- Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. 2011. Overview of the CCP4 suite and current developments. Acta Crystallographica Section Biol. Crystallogr. 67: 235-242. https://doi.org/10.1107/S0907444910045749
- Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132. https://doi.org/10.1107/S0907444904019158
- Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67: 355-367. https://doi.org/10.1107/S0907444911001314
- Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66: 12-21. https://doi.org/10.1107/S0907444909042073
- Holm L, Rosenström P. 2010. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38: W545-W549. https://doi.org/10.1093/nar/gkq366
- Vieille C, Epting KL, Kelly RM, Zeikus JG. 2001. Bivalent cations and amino-acid composition contribute to the thermostability of Bacillus licheniformis xylose isomerase. Eur. J. Biochem. 268: 6291-6301. https://doi.org/10.1046/j.0014-2956.2001.02587.x
- Sriprapundh D, Vieille C, Zeikus JG. 2000. Molecular determinants of xylose isomerase thermal stability and activity: analysis of thermozymes by site-directed mutagenesis. Protein Eng. 13: 259-265. https://doi.org/10.1093/protein/13.4.259
- Vieille C, Hess JM, Kelly RM, Zeikus JG. 1995. xylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana. Appl. Environ. Microbiol. 61: 1867-1875. https://doi.org/10.1128/AEM.61.5.1867-1875.1995
- Sugiyama S, Maruyama M, Sazaki G, Hirose M, Adachi H, Takano K, et al. 2012. Growth of protein crystals in hydrogels prevents osmotic shock. J. Am. Chem. Soc. 134: 5786-5789. https://doi.org/10.1021/ja301584y
-
Lavie A, Allen KN, Petsko GA, Ringe D. 1994. X-ray crystallographic structures of
$\small{D}$ -xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Biochemistry 33: 5469-5480. https://doi.org/10.1021/bi00184a016 -
Zhu X-Y, Teng Mk, Niu L-W, Xu C, Wang Y-Z. 2000. Structure of xylose isomerase from Streptomyces diastaticus No. 7 strain M1033 at
$1.8 5\;{\AA}$ resolution. Acta Crystallogr. D Biol. Crystallogr. 56: 129-136. https://doi.org/10.1107/S0907444999015097
Cited by
- Expression, Characterization and Its Deinking Potential of a Thermostable Xylanase From Planomicrobium glaciei CHR43 vol.9, 2019, https://doi.org/10.3389/fbioe.2021.618979
- Crystal structure of a novel putative sugar isomerase from the psychrophilic bacterium Paenibacillus sp. R4 vol.585, 2021, https://doi.org/10.1016/j.bbrc.2021.11.026
- Glucose Isomerase: Functions, Structures, and Applications vol.12, pp.1, 2022, https://doi.org/10.3390/app12010428