• Title/Summary/Keyword: xylose isomerase

Search Result 51, Processing Time 0.02 seconds

Application of a Compatible Xylose Isomerase in Simultaneous Bioconversion of Glucose and Xylose to Ethanol

  • Chandrakant Priya;Bisaria Virendra S.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2000
  • Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of glucose-xylose mixture was carried out by the yeast Saccharomyces cerevisiae in the presence of a compatible xylose isomerase. The enzyme converted xylose to xylulose and S. cerevisiae fermented xylulose, along with glucose, to ethanol at pH 5.0 and $30^{\circ}C$. This compatible xylose isomerase from Candida boidinii, having an optimum pH and temperature range of 4.5-5.0 and $30-35^{\circ}C$ respectively, was partially purified and immobilized on an inexpensive, inert and easily available support, hen egg shell. An immobilized xylose isomerase loading of 4.5 IU/(g initial xylose) was optimum for SIF of xylose as well as SICF of glucose-xylose mixture to ethanol by S. cerevisiae. The SICF of 30 g/L glucose and 70 g xylose/L gave an ethanol concentration of 22.3 g/L with yield of 0.36 g/(g sugar consumed) and xylose conversion efficiency of $42.8\%$.

  • PDF

Overproduction of Escherichia coli D-Xylose Isomerase Using ${\lambda}P_L$ Promoter

  • Park, Heui-Dong;Joo, Gil-Jae;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.8-12
    • /
    • 1997
  • In order to overproduce D-xylose isomerase, the Escherichia coli D-xylose isomerase (D-xylose ketol-isomerase, EC 5.3.1.5) gene (xylA) was fused to ${\lambda}P_{L}$ promoter. The promoterless xylA gene containing the ribosome binding site and coding region for D-xylose isomerase was cloned into a site 0.3 kb downstream from the ${\lambda}P_{L}$ promoter on a high copy number plasmid. An octameric XbaI linker containing TAG amber codon was inserted between 33rd codon of ${\lambda}N$ and the promoterless xylA gene. The resulting recombinant plasmid (designated as pPX152) was transformed into E. coli M5248 carrying a single copy of the temperature sensitive ${\lambda}cI857$ gene on its chromosomal DNA. When temperature-induced, the transformants produced 15 times as much D-xylose isomerase as that of D-xylose-induced parent strain. The amount of overproduced D-xylose isomerase was found to be about 60% of total protein in cell-free extracts.

  • PDF

Purification and Properties of D-Xylose Isomerase from Lactococcus sp. JK-8 (Lactococcus sp. JK-8에서 생산된 D-Xylose isomerase의 정제와 특성에 관한 연구)

  • Jun, Hong-Ki;Kim, Suk-Young;Baik, Hyung-Suk
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.636-643
    • /
    • 2004
  • D-Xylose isomerase produced by Lactococcus sp. JK-8, isolated from kimchi, was purified 17-fold of homogeneity, and its physicochemical properties were determined. Although the N-terminal amino acid sequence of D-xylose isomerase was analysed to Ala-Tyr-Phe-Asn-Asp-Ile-Ala-Pro-Ile-Lys, it was not similar to that of Lactobacillus enzyme. The molecular weight of the purified enzyme was estimated to be 180 kDa by gel filtration, 45 kDa by SDS-PAGE and the enzyme was homotetramer. The optimum pH of the enzyme was around 7 and stable between pH 6 and 8. The optimum reaction temperature was 7$0^{\circ}C$ and stable up to 7$0^{\circ}C$ in the presence of 1 mM $Mn^{2+}$. Like other D-xylose isomerases, this enzyme required divalent cation, such as $Mg^{2+}$, $Co^{2+}$, or $Mn^{2+}$ for the activity and thermostability. $Mn^{2+}$was the best activator. Substrate specificity studies showed that this enzyme was highly active on D-xylose. The enzyme had an isoelectric point of 4.8, and fm values for D-xylose was 5.9 mM.

Production of Glucose Isomerase from Arthrobacter sp. L-3 (Arthrobacter sp. L-3로부터 Glucose Isomerase의 생산)

  • 이은숙;남궁석
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.117-121
    • /
    • 1997
  • The glucose isomerase productivity of Arthrobacter sp. L-3 was studied. glucose plus xylose showed higher productivity of glucose isomerase than any other carbon sources. Yeast extract showed higher productivity of glucose isomerase than any other nitrogen sources. The optimum culture time for the production of glucose isomerase was 40hrs.

  • PDF

방선균의 xylB 변이주에 의한 포도당 이성화효소의 생산

  • 주길재;이인구
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.75-81
    • /
    • 1997
  • Streptomyces chibaensis J-59 did not grow in the culture medium containing only xylose or xylan as a carbon source, because it was defective in xylulokinase production; xylB mutant. S. chibaensis J-59 was able to produce xylanase and $\beta $-xylosidase as well as glucose isomerase. The glucose isomerase in S. chilbaensis J-59 was induced in the medium containing xylan or xylose which could be utilized as an inducer but not sa carbon and energy sources. So we tried to produce glucose isomerase whthout consumption of xylose or xylan as an inducer by using xylB mutant S. chilbaensis J-59. The optimum condition for the production of the glucose isomerase was attained in a culture medium composed of 1% xylan, 0.15% glucose, 1.5% corn steep liquor, 0.1% MaSO$_{4}$ $\CDOT $7H$_{2}$O, and 0.012% CoCL$_{2}$ $\CDOT $ 6H$_{2}$O(pH 7.0). The production of the enzyme reached to a maximum level when the bacteria were cultured for 42 h at 30$\circ $C. The enzyme production in a jar fermentor was increased twice as much as that in a flask culture.

  • PDF

Properties of Xylose Isomerases in Cell Free Extracts From Streptomyces canus and Streptomyces malachiticus (Strerptomyces canus와 Streptomyces malachiticus의 Xylose Isomerase에 관하여)

  • Kim, Keun;Lee, Min-Jai;Kwon, Young-Myung
    • Korean Journal of Microbiology
    • /
    • v.15 no.1
    • /
    • pp.9-19
    • /
    • 1977
  • Xylone isomerase (D-xylose ketol-isomerase, EC 5,3,1,5) have been demonstrated in the cell-free extracts of Stroptomuces canus and Streptomuces malachiticus grown in the presence of xylose. Xylose, glucose and ribose served as substrates for the enzymes of the two strains with respective $K_m$ values of 22, 130, 290 mM (S. canus) and 7,83,637 mM(S.malachiticus), and $V_max$ values of 1,000, 0.087, $\0.0222{\mu}moles/min/mg$ protein (S. canus) and 0.312, 0.083, 0.500.$\mu$moles/min/mg protein (S. malachiticus). L-Rhammose was also isomerized by the crude enzyme solutions of the two strains. The maximal activities of the two xylose-isomerases were observed at pH 7.5 and $75^{\circ}C$. The xylose isomerase activities of the two strains were activated two-three times by $Mg^{++}\;and\;Co^{++}$ as that of control, partially activated by $Ba^{++}$ and inhibited by $Ni^{++},\;Ca^{++}\;and\;Zn^{++}\$. Particulary, the addtion of $Mn^{++}$ stimulated xylose-isomerizing activities, but inhibited glucose-isomerizing activities in both strains. However, $Cu^{++}$ inhibited xylose-isomerizing activities, while stimulated glucose-isomerizing activities of the enzymes.

  • PDF

Crystal Structure and Biochemical Characterization of Xylose Isomerase from Piromyces sp. E2

  • Son, Hyeoncheol Francis;Lee, Sun-Mi;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.571-578
    • /
    • 2018
  • Biofuel production using lignocellulosic biomass is gaining attention because it can be substituted for fossil fuels without competing with edible resources. However, because Saccharomyces cerevisiae does not have a ${\text\tiny{D}}$-xylose metabolic pathway, oxidoreductase or isomerase pathways must be introduced to utilize ${\text\tiny{D}}$-xylose from lignocellulosic biomass in S. cerevisiae. To elucidate the biochemical properties of xylose isomerase (XI) from Piromyces sp. E2 (PsXI), we determine its crystal structure in complex with substrate mimic glycerol. An amino-acid sequence comparison with other reported XIs and relative activity measurements using five kinds of divalent metal ions confirmed that PsXI belongs to class II XIs. Moreover kinetic analysis of PsXI was also performed using $Mn^{2+}$, the preferred divalent metal ion for PsXI. In addition, the substrate-binding mode of PsXI could be predicted with the substrate mimic glycerol bound to the active site. These studies may provide structural information to enhance ${\text\tiny{D}}$-xylose utilization for biofuel production.

Formation of D-Glucose Isomerase by Streptomyces sp. (Streptomyces sp.에 의한 포도당 이성화효소의 생성)

  • Rhee, In-Koo;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.3
    • /
    • pp.173-180
    • /
    • 1980
  • A source of D-xylose was required for the enhanced production of D-glucose isomerase of Streptomyces sp. strain K-17. D-glucose supported the luxuriant growth of the organism as well as D-xylose, but D-glucose isomerase activity was hardly detected in the D-glucose-grown cells. When the D-glucose-grown cells were incubated aerobically for a few hours in 0.5% xylose solution in 0.05 M phosphate buffer, pH 7.0, it was found that inductive formation of D-glucose isomerase occurred in the cells without multiplication. In the non-growth phase of cells the inductive formation of D-glucose isomerase occurred because a source of nitrogen for the synthesis of enzymes was obtained from turnover of protein accumulated in cells. D-ribose, L-arabinose, D-glucose, D-mannose, citrate, succinate and tartrate could not induce the formation of D-glucose isomerase, but D-xylose could induce. Inductinn of D-glucose isomerase was repressed by D-glucose and its catabolites : glycerol, succinate and citrate. Inductive formation of the enzymes in the non-growth phase was stimulated by $Ba^{2+}$, $Mg^{2+}$ and $Co^{2+}$, and inhibited by C $u^{2+}$, C $d^{2+}$, A $g^{+}$and H $g^{2+}$. The synthesis of enzymes in the induction system composed of 0.5% xylose solution was disrupted by actinomycin D, streptomycin, chloramphenicol, kanamycin, tetracycline, p-chloromercuribenzo ate, arsenate and 2, 4-dinitrophenol, but not disrupted by mitomycin C and penicillin G.icillin G.

  • PDF

Deletion of xylR Gene Enhances Expression of Xylose Isomerase in Streptomyces lividans TK24

  • Heo, Gun-Youn;Kim, Won-Chan;Joo, Gil-Jae;Kwak, Yun-Young;Shin, Jae-Ho;Roh, Dong-Hyun;Park, Heui-Dong;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.837-844
    • /
    • 2008
  • Glucose (xylose) isomerases from Streptomyces sp. have been used for the production of high fructose corn syrup for industrial purposes. An 11-kb DNA fragment containing the xyl gene cluster was isolated from Streptomyces lividans TK24 and its nucleotide sequences were analyzed. It was found that the xyl gene cluster contained a putative transcriptional repressor (xylR), xylulokinase (xylB), and xylose isomerase (xylA) genes. The transcriptional directions of the xylB and xylA genes were divergent, which is consistent to those found in other streptomycetes. A gene encoding XylR was located downstream of the xylB gene in the same direction, and its mutant strain produced xylose isomerase regardless of xylose in the media. The enzyme expression level in the mutant was 4.6 times higher than that in the parent strain under xylose-induced condition. Even in the absence of xylose, the mutant strain produce over 60% of enzyme compared with the xylose-induced condition. Gel mobility shift assay showed that XylR was able to bind to the putative xyl promoter, and its binding was inhibited by the addition of xylose in vitro. This result suggested that XylR acts as a repressor in the S. lividans xylose operon.

Comparison of Growth Inhibitory Effects on Cancer Cells of Saponin and Fucoidan Treated with Recombinant Thermophilic Xylose Isomerase (재조합 고온성 Xylose Isomerase 처리에 의한 사포닌 및 푸코이단의 암세포 생육저해 활성 비교)

  • Lee, Dong-Geun;Park, Seong-Hwan;Lee, Sang-Hyeon
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.332-337
    • /
    • 2013
  • The gene encoding for xylose isomerase from the thermophilic bacterium Thermotoga maritima was cloned and recombinantly expressed in E. coli cells. Optimal activity was shown at $90^{\circ}C$ and pH 8.0. Treatment of saponin by recombinant xylose isomerase increased the growth inhibitory effect against human gastric cancer (AGS) cells and human colon cancer (HT-29) cells. On the other hand, treatment of fucoidan by the enzyme could not change the growth inhibitory effect against the same cancer cells. One ${\mu}g/ml$ of enzyme-treated saponin exhibited the same or higher growth inhibitory effect against both cancer cells compared with 100 ${\mu}g/ml$ of enzymeuntreated saponin. These results would be useful in the development of functional food or drug.