DOI QR코드

DOI QR Code

Effect of Types of Force-fields on Gas Transport Thorough Polymer Membrane

Force-field가 고분자 분리막의 기체 투과거동에 미치는 영향

  • Lee, Ji-Su (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Park, Chi Hoon (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH))
  • 이지수 (경남과학기술대학교 미래융복합기술연구소 에너지공학과) ;
  • 박치훈 (경남과학기술대학교 미래융복합기술연구소 에너지공학과)
  • Received : 2019.02.11
  • Accepted : 2019.02.16
  • Published : 2019.02.28

Abstract

In this study, we investigated how the force-field, which is the most important factor to define atomic motion in molecular dynamics (MD), affects the motion of the polymer and gas molecules. The repeat units and the polymer structure were well simulated in all five force-fields, and the distribution of the polymer linear chain in the final polymer 3D model did not show any significant difference. However, the movement of actual gas molecules showed a very different tendency, which was also observed in COMPASS and pcff using the same functional form. Therefore, even if the same structure is used, it can be seen that the motion of the gas molecule moves under the influence of the force-field continuously over time, so that the effect is much larger than that of macromolecules such as a polymer linear chain. Accordingly, in case of using different force-fields, it is necessary to be very careful in comparison of those results.

본 연구에서는 분자동역학에서 원자의 움직임을 정의하는 가장 중요한 요소인 force-field가 실제 고분자 및 기체 분자의 움직임에 어떠한 영향을 주는지 알아보고자 하였다. Repeat unit과 고분자 구조는 본 연구에서 사용된 5종의 force-field 에서 모두 정상적으로 작용을 하였고, 최종 고분자 3D 모델에서 고분자 linear chain의 분포에서도 큰 차이를 보이지 않았다. 그러나 실제 기체 분자의 움직임은 매우 다른 경향을 나타내었으며, 이는 같은 functional form을 사용하는 COMPASS와 pcff 에서도 관찰되었다. 따라서 동일한 구조라고 하더라도 기체 분자의 운동은 시간에 따라 지속적으로 force-field의 영향 하에서 움직이기 때문에, 고분자 linear chain과 같은 거대 분자에 비하여 그 영향을 훨씬 크게 받는다는 것을 알 수 있으며, 결론적으로 서로 다른 force-field의 사용 시에는 결과 비교에 있어서도 매우 신중을 기해야 할 것이다.

Keywords

References

  1. C. H. Park, D. J. Kim, and S. Y. Nam, "Molecular dynamics (MD) study of polymeric membranes for gas separation", Membr. J., 24, 341 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.341
  2. C. H. Park, S. Y. Nam, and Y. T. Hong, "Molecular dynamics (MD) study of proton exchange membranes for fuel cells", Membr. J., 26, 329 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.329
  3. J. M. Haile, "Molecular dynamics simulation", Wiley, New York (1992).
  4. D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers, and M. Bohning, "Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials", Macromol. Theory Simul., 9, 293 (2000). https://doi.org/10.1002/1521-3919(20000701)9:6<293::AID-MATS293>3.0.CO;2-1
  5. Y. Jiang, F. T. Willmore, D. Sanders, Z. P. Smith, C. P. Ribeiro, C. M. Doherty, A. Thornton, A. J. Hill, B. D. Freeman, and I. C. Sanchez, "Cavity size, sorption and transport characteristics of thermally rearranged (TR) polymers", Polymer, 52, 2244 (2011). https://doi.org/10.1016/j.polymer.2011.02.035
  6. S. T. Kao, Y. H. Huang, K. S. Liao, W. S. Hung, K. S. Chang, M. De Guzman, S. H. Huang, D. M. Wang, K. L. Tung, K. R. Lee, and J. Y. Lai, "Applications of positron annihilation spectroscopy and molecular dynamics simulation to aromatic polyamide pervaporation membranes", J. Membr. Sci., 348, 117 (2010). https://doi.org/10.1016/j.memsci.2009.10.048
  7. C. H. Park, E. Tocci, Y. M. Lee, and E. Drioli, "Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)", J. Phys. Chem. B, 116, 12864 (2012). https://doi.org/10.1021/jp307365y
  8. V. J. Vasudevan and J. E. McGrath, "Atomistic modeling of amorphous aromatic polybenzoxazoles", Macromolecules, 29, 637 (1996). https://doi.org/10.1021/ma951133l
  9. C. H. Park, E. Tocci, S. Kim, A. Kumar, Y. M. Lee, and E. Drioli, "A simulation study on oh-containing polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): Relationship between gas transport properties and free volume morphology", J. Phys. Chem. B, 118, 2746 (2014). https://doi.org/10.1021/jp411612g
  10. C. H. Park, T.-H. Kim, S. Y. Nam, and Y. T. Hong, "Water channel morphology of non-perfluorinated hydrocarbon proton exchange membrane under a low humidifying condition", Int. J. Hydrogen Energy, 44, 2340 (2019). https://doi.org/10.1016/j.ijhydene.2018.06.154
  11. C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010). https://doi.org/10.1021/jp105708m
  12. K. S. Chang, Y. H. Huang, K. R. Lee, and K. L. Tung, "Free volume and polymeric structure analyses of aromatic polyamide membranes: A molecular simulation and experimental study", J. Membr. Sci., 354, 93 (2010). https://doi.org/10.1016/j.memsci.2010.02.076
  13. J. H. Lee and C. H. Park, "Effect of force-field types on the proton diffusivity calculation in molecular dynamics (MD) simulation", Membr. J., 27, 358 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.4.358
  14. H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998). https://doi.org/10.1021/jp980939v
  15. J. Yang, Y. Ren, A. Tian, and H. Sun, "COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, $H_2$, $O_2$, $N_2$, NO, CO, $CO_2$, $NO_2$, $CS_2$, and $SO_2$, in liquid phases", J. Phys. Chem. B, 104, 4951 (2000). https://doi.org/10.1021/jp992913p
  16. C. H. Park, T.-H. Kim, D. J. Kim, and S. Y. Nam, "Molecular dynamics simulation of the functional group effect in hydrocarbon anionic exchange membranes", Int. J. Hydrogen Energy, 42, 20895 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.146
  17. H. Kang and C. H. Park, "Investigation of gas transport properties of polymeric membranes having different chain lengths via molecular dynamics (MD)", Membr. J., 28, 67 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.67
  18. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines", J. Chem. Phys., 21, 1087 (1953). https://doi.org/10.1063/1.1699114
  19. C. Rizzuto, A. Caravella, A. Brunetti, C. H. Park, Y. M. Lee, E. Drioli, G. Barbieri, and E. Tocci, "Sorption and diffusion of $CO_2/N_2$ in gas mixture in thermally-rearranged polymeric membranes: A molecular investigation", J. Membr. Sci., 528, 135 (2017). https://doi.org/10.1016/j.memsci.2017.01.025
  20. M. Heuchel, D. Hofmann, and P. Pullumbi, "Molecular modeling of small-molecule permeation in polyimides and its correlation to free-volume distributions", Macromolecules, 37, 201 (2003). https://doi.org/10.1021/ma035360w