Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.37

Effect of Types of Force-fields on Gas Transport Thorough Polymer Membrane  

Lee, Ji-Su (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH))
Park, Chi Hoon (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH))
Publication Information
Membrane Journal / v.29, no.1, 2019 , pp. 37-43 More about this Journal
Abstract
In this study, we investigated how the force-field, which is the most important factor to define atomic motion in molecular dynamics (MD), affects the motion of the polymer and gas molecules. The repeat units and the polymer structure were well simulated in all five force-fields, and the distribution of the polymer linear chain in the final polymer 3D model did not show any significant difference. However, the movement of actual gas molecules showed a very different tendency, which was also observed in COMPASS and pcff using the same functional form. Therefore, even if the same structure is used, it can be seen that the motion of the gas molecule moves under the influence of the force-field continuously over time, so that the effect is much larger than that of macromolecules such as a polymer linear chain. Accordingly, in case of using different force-fields, it is necessary to be very careful in comparison of those results.
Keywords
molecular dynamics; force-field; polymer structure; gas transport;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 C. H. Park, D. J. Kim, and S. Y. Nam, "Molecular dynamics (MD) study of polymeric membranes for gas separation", Membr. J., 24, 341 (2014).   DOI
2 C. H. Park, S. Y. Nam, and Y. T. Hong, "Molecular dynamics (MD) study of proton exchange membranes for fuel cells", Membr. J., 26, 329 (2016).   DOI
3 J. M. Haile, "Molecular dynamics simulation", Wiley, New York (1992).
4 D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers, and M. Bohning, "Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials", Macromol. Theory Simul., 9, 293 (2000).   DOI
5 Y. Jiang, F. T. Willmore, D. Sanders, Z. P. Smith, C. P. Ribeiro, C. M. Doherty, A. Thornton, A. J. Hill, B. D. Freeman, and I. C. Sanchez, "Cavity size, sorption and transport characteristics of thermally rearranged (TR) polymers", Polymer, 52, 2244 (2011).   DOI
6 S. T. Kao, Y. H. Huang, K. S. Liao, W. S. Hung, K. S. Chang, M. De Guzman, S. H. Huang, D. M. Wang, K. L. Tung, K. R. Lee, and J. Y. Lai, "Applications of positron annihilation spectroscopy and molecular dynamics simulation to aromatic polyamide pervaporation membranes", J. Membr. Sci., 348, 117 (2010).   DOI
7 C. H. Park, E. Tocci, Y. M. Lee, and E. Drioli, "Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)", J. Phys. Chem. B, 116, 12864 (2012).   DOI
8 V. J. Vasudevan and J. E. McGrath, "Atomistic modeling of amorphous aromatic polybenzoxazoles", Macromolecules, 29, 637 (1996).   DOI
9 C. H. Park, E. Tocci, S. Kim, A. Kumar, Y. M. Lee, and E. Drioli, "A simulation study on oh-containing polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): Relationship between gas transport properties and free volume morphology", J. Phys. Chem. B, 118, 2746 (2014).   DOI
10 C. H. Park, T.-H. Kim, S. Y. Nam, and Y. T. Hong, "Water channel morphology of non-perfluorinated hydrocarbon proton exchange membrane under a low humidifying condition", Int. J. Hydrogen Energy, 44, 2340 (2019).   DOI
11 C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010).   DOI
12 K. S. Chang, Y. H. Huang, K. R. Lee, and K. L. Tung, "Free volume and polymeric structure analyses of aromatic polyamide membranes: A molecular simulation and experimental study", J. Membr. Sci., 354, 93 (2010).   DOI
13 J. H. Lee and C. H. Park, "Effect of force-field types on the proton diffusivity calculation in molecular dynamics (MD) simulation", Membr. J., 27, 358 (2017).   DOI
14 H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998).   DOI
15 J. Yang, Y. Ren, A. Tian, and H. Sun, "COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, $H_2$, $O_2$, $N_2$, NO, CO, $CO_2$, $NO_2$, $CS_2$, and $SO_2$, in liquid phases", J. Phys. Chem. B, 104, 4951 (2000).   DOI
16 C. H. Park, T.-H. Kim, D. J. Kim, and S. Y. Nam, "Molecular dynamics simulation of the functional group effect in hydrocarbon anionic exchange membranes", Int. J. Hydrogen Energy, 42, 20895 (2017).   DOI
17 M. Heuchel, D. Hofmann, and P. Pullumbi, "Molecular modeling of small-molecule permeation in polyimides and its correlation to free-volume distributions", Macromolecules, 37, 201 (2003).   DOI
18 H. Kang and C. H. Park, "Investigation of gas transport properties of polymeric membranes having different chain lengths via molecular dynamics (MD)", Membr. J., 28, 67 (2018).   DOI
19 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines", J. Chem. Phys., 21, 1087 (1953).   DOI
20 C. Rizzuto, A. Caravella, A. Brunetti, C. H. Park, Y. M. Lee, E. Drioli, G. Barbieri, and E. Tocci, "Sorption and diffusion of $CO_2/N_2$ in gas mixture in thermally-rearranged polymeric membranes: A molecular investigation", J. Membr. Sci., 528, 135 (2017).   DOI