DOI QR코드

DOI QR Code

Poly(ether block amide) (PEBA) Based Membranes for Carbon Dioxide Separation

이산화탄소 분리를 위한 PEBA공중합체 기반 분리막

  • Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • Received : 2019.02.01
  • Accepted : 2019.02.21
  • Published : 2019.02.28

Abstract

Poly(ether block amide) (PEBA) is one of the commercially important class of block copolymer very much suitable specifically for $CO_2$ separation. Gas separation membrane need to have good mechanical strength as well as high gas permeability. The crystalline polyamide (PA) block provides the mechanical strength while the rubbery polyether (PE) group being $CO_2$-philic facilitate $CO_2$ permeation though the membrane. Composition of thermoplastic and rubbery phase in the polymer are changed to fit into suitable gas separation application. Although PEBA has good permeability, the selectivity of the membrane can be enhanced by incorporating molecular sieve without affection much the gas permeability. Mixed matrix membrane (MMM), a class of composite membrane combine the advantage of polymer matrix with the inorganic fillers. However, there are some disadvantages based on the compatibility of the inorganic fillers and polymeric phase. This review covers both the advantage and limitations of PEBA block copolymer based composite membrane.

Poly(ether block amide) (PEBA)는 이산화탄소 분리에 매우 적합한 상용 블록 공중합체 중 하나이다. 기체분리막의 경우 높은 투과도 뿐 아니라 강한 기계적 강도 또한 필요로 한다. PEBA공중합체의 결정성 폴리아마이드(polyamide) 블록은 기계적 강도를 제공하며 동시에 rubbery한 폴리에테르(polyether) 부분은 이산화탄소와의 친화도를 부여하여 이산화탄소 촉진 수송에 기여한다. PEBA공중합체에서 결정성 상과 rubber한 상의 조성은 기체분리막에 적합하게 조절될 수 있다. PEBA 공중합체를 기반으로 한 분리막은 좋은 투과도를 갖지만 추가적으로 분자체 효과를 이용하여 큰 기체 투과도 손실 없이 분리막의 선택도를 향상시킬 수 있다. 혼합 매질 분리막은 혼합막의 한 종류로서 고분자 매트릭스와 유기 첨가제로 이루어져 있다. 하지만 고분자 매트릭스와 유기 첨가제간의 양립성(compatibility)에 따른 문제점 또한 존재한다. 따라서 본 총설에서는 PEBA 공중합체를 기반으로 한 혼합막의 장점과 한계에 대해 다루고자 한다.

Keywords

References

  1. B. Seoane, J. Coronas, I. Gascon, M. E. Benavides, O. Karvan, J. Caro, F. Kapteijn, and J. Gascon, "Metal-organic framework based mixed matrix membranes: A solution for highly efficient $CO_2$ capture?", Chem. Soc. Rev., 44, 2421 (2014). https://doi.org/10.1039/C4CS00437J
  2. A. Jamil, O. P. Ching, and A. B. M. Shariff, "Current status and future prospect of polymer-layered silicate mixed-matrix membranes for $CO_2/CH_4$ separation", Chem. Eng. Tech., 39, 1392 (2016).
  3. T. S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.008
  4. A. E. Amooghin, S. Mashhadikhan, H. Sanaeepur, A. Moghadassi, T. Matsuura, and S. Ramakrishna, "Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient $CO_2$ separation", Prog Mat. Sci., 102, 222 (2019). https://doi.org/10.1016/j.pmatsci.2018.11.002
  5. V. Bondar, B. Freeman, and I. Pinnau, "Gas transport properties of poly(Ether-B-Amide) segmented block copolymers", J. Polym. Sci. Part B: Polym. Phys., 38, 2051 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  6. H. Rabiee, M. Soltanieh, S. A. Mousavi, and A. Ghadimi, "Improvement in $CO_2/H_2$ separation by fabrication of poly(Ether-B-Amide6)/glycerol triacetate gel membranes". J. Membr. Sci., 469, 43 (2014). https://doi.org/10.1016/j.memsci.2014.06.026
  7. H. S. Faruque and C. Lacabanne, "Study of multiple relaxations in PEBAX, polyether block amide (PA12 2135 block PTMG 2032), copolymer using the thermally stimulated current method", Polymer, 27, 527 (1986). https://doi.org/10.1016/0032-3861(86)90237-5
  8. N. Azizi, T. Mohammadi, and R. Mosayebi Behbahani, "Comparison of permeability performance of $PEBAX-1074/TiO_2$, $PEBAX-1074/SiO_2$ and $PEBAX-1074/Al_2O_3$ nanocomposite membranes for $CO_2/CH_4$ separation", Chem. Eng. Res. Des., 117, 177 (2017). https://doi.org/10.1016/j.cherd.2016.10.018
  9. N. Azizi, T. Mohammadi, and R. M. Behbahani, "Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved $CO_2$ separation performance", J. Energy Chem., 26, 454 (2017). https://doi.org/10.1016/j.jechem.2016.11.018
  10. P. A. Gamali, A. Kazemi, R. Zadmard, M. J. Anjareghi, A. Rezakhani, R. Rahighi, and M. Madani, "Distinguished discriminatory separation of $CO_2$ from its methane-containing gas mixture via PEBAX mixed matrix membrane", Chin. J. Chem. Eng., 26, 73 (2018). https://doi.org/10.1016/j.cjche.2017.04.002
  11. B. Yu, H. Cong, Z. Li, J. Tang, and X. S. Zhao, "Pebax-1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for $CO_2/N_2$ and $CO_2/H_2$ separation", J. Appl. Polym. Sci., 130, 2867 (2013). https://doi.org/10.1002/app.39500
  12. W. Zhu, Y. Qin, Z. Wang, J. Zhang, R. Guo, and X. Li, "Incorporating the magnetic alignment of GO composites into Pebax matrix for gas separation", J. Energy Chem., https://doi.org/10.1016/j.jechem.2018.04.013 (2018).
  13. G. Dong, J. Hou, J. Wang, Y. Zhang, V. Chen, and J. Liu, "Enhanced $CO_2/N_2$ separation by porous redu ced graphene oxide/Pebax mixed matrix membranes", J. Membr. Sci., 520, 860-868 (2016). https://doi.org/10.1016/j.memsci.2016.08.059
  14. Y. Li and T. S. Chung, "Molecular-level mixed matrix membranes comprising Pebax$^{(R)}$ and POSS for hydrogen purification via preferential $CO_2$ removal", Int. J. Hydrogen Energy, 35, 10560 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.124
  15. M. M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, S. Bolmer, M. M. Khan, and V. Abetz, "PEBAX$^{(R)}$ with PEG functionalized POSS as nanocomposite membranes for $CO_2$ separation", J. Membr. Sci., 437, 286 (2013). https://doi.org/10.1016/j.memsci.2013.03.001
  16. M. M. Rahman, S. Shishatskiy, C. Abetz, P. Georgopanos, S. Neumann, M. M. Khan, V. Filiz, and V. Abetz, "Influence of temperature upon properties of tailor-made PEBAX$^{(R)}$ MH 1657 nanocomposite membranes for post-combustion $CO_2$ capture", J. Memrb. Sci., 469, 344 (2014). https://doi.org/10.1016/j.memsci.2014.06.048
  17. T. Khosravi, M. Omidkhah, S. Kaliaguine, and D. Rodrigue, "Amine-functionalized CuBTC/poly(ether-b-amide-6) (Pebax$^{(R)}$ MH 1657) mixed matrix membranes for $CO_2/CH_4$ separation", Canadian J. Chem. Engg., 95, 2014 (2017).
  18. O. G. Nik, X. Y. Chen, and S. Kaliaguine, "Functionalized metal organic framework-polyimide mixed matrix membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 413, 48 (2012). https://doi.org/10.1016/j.memsci.2012.04.003
  19. F. Dorosti and A. Alizadehdakhel, "Fabrication and investigation of PEBAX/Fe-BTC, a high permeable and $CO_2$ selective mixed matrix membrane", Chem. Eng. Res. Des., 136, 119 (2018). https://doi.org/10.1016/j.cherd.2018.01.029
  20. F. Karamouz, H. Maghsoudi, and R. Yegani, "Synthesis of high-performance Pebax$^{(R)}$-1074/DD3R mixed-matrix membranes for $CO_2/CH_4$ separation", Chem. Eng. Technol., 41, 1767 (2018). https://doi.org/10.1002/ceat.201800087
  21. V. Nafisi and M. B. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for $CO_2$ capture", J. Membr. Sci., 459, 244 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
  22. J. Didden, R. Thur, A. Volodin, and I. F. J. Vankelecom, "Blending PPO-based molecules with Pebax MH 1657 in membranes for gas separation", J. Appl. Polym. Sci., 135, 46433 (2018). https://doi.org/10.1002/app.46433
  23. E. G. Estahbanati, M. Omidkhah, and A. E. Amooghin, "Interfacial design of ternary mixed matrix membranes containing Pebax 1657/Silver-Nanopowder/[BMIM][BF4] for improved $CO_2$ separation performance", ACS Appl. Mater. Interfaces., 9, 10094 (2017). https://doi.org/10.1021/acsami.6b16539
  24. A. Jomekian, B. Bazooyar, R. M. Behbahani, T. Mohammadi, and A. Kargari, "Ionic liquid-modified Pebax$^{(R)}$ 1657 membrane filled by ZIF-8 particles for separation of $CO_2$ from $CH_4$, $N_2$ and $H_2$", J. Membr. Sci., 524, 652 (2017). https://doi.org/10.1016/j.memsci.2016.11.065
  25. A. R. Gholap, K. Venkatesan, T. Daniel, R. J. Lahoti, and K. V. Srinivasan, "Ultrasound promoted acetylation of alcohols in room temperature ionic liquid under ambient conditions", Green Chem., 5, 639 (2003). https://doi.org/10.1039/b305993f
  26. H. Sanaeepur, R. Ahmadi, A. Ebadi Amooghin, and D. Ghanbari, "A novel ternary mixed matrix membrane containing glycerol-modified poly(ether-block-amide) (Pebax 1657)/copper nanoparticles for $CO_2$ separation", J. Membr. Sci., 573, 234 (2019). https://doi.org/10.1016/j.memsci.2018.12.012
  27. J. E. Shin, S. K. Lee, Y. H. Cho, and H. B. Park, "Effect of PEG-MEA and graphene oxide additives on the performance of Pebax$^{(R)}$ 1657 mixed matrix membranes for $CO_2$ separation", J. Membr. Sci., 572, 300 (2019). https://doi.org/10.1016/j.memsci.2018.11.025