Fig. 1. BCI System
Fig. 2. Maven build structure
Fig. 3. Build life cycle
Fig. 4. Server platform of brainwave analyzer
Fig. 5. OOP Diagram of brainwave execution
Fig. 6. Log data of server
Fig. 7. Realtime brainwave console data
Fig. 8. Startup display
Fig. 9. Brainwave AnalyserV1.0 execution results
Table 1. Frequency bands of brainwave
Table 2. Brain waveforms to physical conditions
Table 3. Repository of maven build
Table 4. Dependency library setting
참고문헌
- G.. Schalk & E. C. Leuthardt. (2011). Brain-computer interfaces using electrocorticographic signals. IEEE reviews in biomedical engineering, 4, 140-154. https://doi.org/10.1109/RBME.2011.2172408
- L. Bi, X. A. Fan & Y. Liu. (2013). EEG-based brain-controlled mobile robots: a survey. IEEE transactions on human-machine systems, 43(2), 161-176. https://doi.org/10.1109/TSMCC.2012.2219046
- J. R. Wolpaw, et al. (2000). Brain-computer interface technology: a review of the first international meeting. IEEE transactions on rehabilitation engineering, 8(2), 164-173. https://doi.org/10.1109/TRE.2000.847807
- A. N. Malik, J. Iqbal & M. I. Tiwana. (2016). EEG signals classification and determination of optimal feature-classifier combination for predicting the movement intent of lower limb. In Robotics and Artificial Intelligence (ICRAI), 2016 2nd International Conference on (pp. 45-49). IEEE.
- X. Gao, D. Xu, M. Cheng & S. Gao. (2003). A BCI-based environmental controller for the motion-disabled. IEEE Transactions on neural systems and rehabilitation engineering, 11(2), 137-140. https://doi.org/10.1109/TNSRE.2003.814449
- F. Cincotti et al. (2008). Non-invasive brain-computer interface system: towards its application as assistive technology. Brain research bulletin, 75(6), 796-803. https://doi.org/10.1016/j.brainresbull.2008.01.007
- B. Z. Allison et al. (2010). Toward a hybrid brain-computer interface based on imagined movement and visual attention. Journal of neural engineering, 7(2), 026007. https://doi.org/10.1088/1741-2560/7/2/026007
- B. S. Zainuddin, Z. Hussain & I. S. Isa. (2014). Alpha and beta EEG brainwave signal classification technique: A conceptual study. In Signal Processing & its Applications (CSPA), 2014 IEEE 10th International Colloquium on (pp. 233-237). IEEE.
- D. Wang et al. (2005, May). Measurement and analysis of electroencephalogram (EEG) using directional visual stimuli for brain computer interface. In Active Media Technology, 2005.(AMT 2005). Proceedings of the 2005 International Conference on (pp. 34-39). IEEE.
- B. Ulker et al. (2017, June). Relations of attention and meditation level with learning in engineering education. In Electronics, Computers and Artificial Intelligence (ECAI), 2017 9th International Conference on (pp. 1-4). IEEE.
- SPRING: https://www.spring.io
- MAVEN: https://maven.apache.org
- MARIADB: https://www.mariadb.com
- S. J. Choi & B. G. Kang. (2014). Prototype design and implementation of an automatic control system based on a BCI. Wireless personal communications, 79(4), 2551-2563. https://doi.org/10.1007/s11277-014-1861-5
- NEUROSKY: https://www.neurosky.com