Fig. 1. Solid angle, dΩ, in an upper hemisphere to estimate fracture tensor.
Fig. 2. Comparison between directional block conductivity(k(p)) and connected fracture tensor component(CFTC) for different joint configurations of selected DFN systems; (a) & (b) D-1-1-*, (c) & (d) D2-2-*, (e) & (f) L1-3-*.
Fig. 3. Relation between CFTC and directional conductivity factor(Kf) for DFN systems.
Fig. 4. Effect of the first invariant(F0) of connectedfracture tensor on ER.
Fig. 5. Relation between block conductivity factor and the first invariant of connected fracture tensor for DFN systems.
Fig. 6. The connected flow network on a square window of size 20 m showing (a) before and (b) after correction using the first invariant of 2-D fracture tensor.
Table 1. Summary of input parameters for the generated DFN systems having different joint orientation, density and size.(after Han et al., 2017)
Table 2. An example of fracture geometry before and after correction using the first invariant of 2-D fracture tensor
Table 3. Estimated directional block conductivity in different direction and average block conductivity for the DFN systems having fracture geometry in Table 2
References
- Fu, P. and Dafalias, Y.F. (2015) Relationship between void- and contact normal-based fabric tensors for 2D idealized granular materials. Int. J. Soilds Struct., v.63, p.68-81. https://doi.org/10.1016/j.ijsolstr.2015.02.041
- Han, J. and Um, J. (2016) Effect of joint orientation distribution on hydraulic behavior of the 2-D DFN system. Economic and Environmental Geology, v.49, p.31-41. https://doi.org/10.9719/EEG.2016.49.1.31
- Han, J., Um, J. and Lee, D. (2017) Effects of joint density and size distribution on hydrogeologic characteristics of the 2-D DFN system. Economic and Environmental Geology, v.50, p.61-71. https://doi.org/10.9719/EEG.2017.50.1.61
- Kanatani, K.I. (1984) Distribution of directional data and fabric tensors. Int. J. Eng. Sci., v.22, p.149-164. https://doi.org/10.1016/0020-7225(84)90090-9
- Kulatilake, P.H.S.W., Ucpirti, H. and Stephansson, O. (1994) Effect of finite size joints on the deformability of jointed rock at the two dimensional level. Can. Geotech. J., v.31, p.364-374. https://doi.org/10.1139/t94-044
- Li, X. and Li, X.S. (2009) Micro-macro quantification of the internal structure of granular materials. J. Eng. Mech., ASCE, v.135, p.641-656. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:7(641)
- Mahtab, M.A. and Yegulalp, T.M. (1984) A similarity test for grouping orientation data in rock mechanics, Proc. of the 25th U.S. Symp. on Rock Mech., p.495-502.
- Miller, S.M. (1983) A statistical method to evaluate homogeneity of structural populations. Mathematical Geology, v.15, p.317-328. https://doi.org/10.1007/BF01036073
- Oda, M. (1982) Fabric tensor for discontinuous geological materials. Soils Found., v.22, P.96-108. https://doi.org/10.3208/sandf1972.22.4_96
- Panda, B.B. and Kulatilake, P.H.S.W. (1999) Relations between fracture tensor parameters and jointed rock hydraulics, J. Eng. Mech., v.125, p.51-59. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:1(51)
- Rothenburg, L. and Bathurst, R.J. (1992) Micromechanical features of granular assemblies with planar elliptical particles. Geotechnique, v.42, p.79-95. https://doi.org/10.1680/geot.1992.42.1.79
- Satake, M. (1982) Fabric tensor in granular materials. in Vermeer, P.A. and Luger, H.J. (eds.), Proc. IUTAM Symp. on Deformation and Failure of Granular Materials. A.A. Balkema, Rotterdam, p.63-68.
- Wang, M., Kulatilake, P.H.S.W., Panda, B.B. and Rucker, M.L. (2001) Groundwater resources evaluation case study via discrete fracture flow modeling, Engineering Geology, v.62, p.267-291. https://doi.org/10.1016/S0013-7952(01)00029-1