References
- Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. 2004. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6: 17-32. https://doi.org/10.1016/j.ccr.2004.06.010
- Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J, Bouvier AM. 2006. Epidemiology and management of liver metastases from colorectal cancer. Ann. Surg. 244: 254-259. https://doi.org/10.1097/01.sla.0000217629.94941.cf
- Jin K, Gao W, Lu Y, Lan H, Teng L, Cao F. 2012. Mechanisms regulating colorectal cancer cell metastasis into liver (Review). Oncol. Lett. 3: 11-15. https://doi.org/10.3892/ol.2011.432
- O'Brien CA, Pollett A, Gallinger S, Dick JE. 2007. A human colon cancer cell capable of initiating tumour growth in immunode-ficient mice. Nature 445: 106-110. https://doi.org/10.1038/nature05372
- Cho RW, Clarke MF. 2008. Recent advances in cancer stem cells. Curr. Opin. Genet. Dev. 18: 48-53. https://doi.org/10.1016/j.gde.2008.01.017
- Abdullah LN, Chow EK. 2013. Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med. 2: 3. https://doi.org/10.1186/2001-1326-2-3
- Kozovska Z, Gabrisova V, Kucerova L. 2014. Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomed. Pharmacother. 68: 911-916. https://doi.org/10.1016/j.biopha.2014.10.019
- Ong CW, Kim LG, Kong HH, Low LY, Iacopetta B, Soong R, et al. 2010. CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Mod. Pathol. 23: 450-457. https://doi.org/10.1038/modpathol.2009.181
- Du L, Wang H, He L, Zhang J, Ni B, Wang X, et al. 2008. CD44 is of functional importance for colorectal cancer stem cells. Clin. Cancer Res. 14: 6751-6760. https://doi.org/10.1158/1078-0432.CCR-08-1034
- Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, et al. 2009. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69: 3382-3389. https://doi.org/10.1158/0008-5472.CAN-08-4418
- Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111-115. https://doi.org/10.1038/nature05384
- Moon Y. 2011. Mucosal Injuries due to Ribosome-Inactivating Stress and the Compensatory Responses of the Intestinal Epithelial Barrier. Toxins 3: 1263-1277. https://doi.org/10.3390/toxins3101263
- Maresca M, Fantini J. 2010. Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases. Toxicon 56: 282-294. https://doi.org/10.1016/j.toxicon.2010.04.016
- Mishra S, Tewari P, Chaudhari BP, Dwivedi PD, Pandey HP, Das M. 2016. Deoxynivalenol induced mouse skin tumor initiation: Elucidation of molecular mechanisms in human HaCaT keratinocytes. Int. J. Cancer. 139: 2033-2046. https://doi.org/10.1002/ijc.30260
- Graziani F, Pujol A, Nicoletti C, Pinton P, Armand L, Di Pasquale E, et al. 2015. The food-associated ribotoxin deoxynivalenol modulates inducible NO synthase in human intestinal cell model. Toxicol. Sci. 145: 372-382. https://doi.org/10.1093/toxsci/kfv058
- Yoder JM, Aslam RU, Mantis NJ. 2007. Evidence for widespread epithelial damage and coincident production of monocyte chemotactic protein 1 in a murine model of intestinal ricin intoxication. Infect. Immun. 75: 1745-1750. https://doi.org/10.1128/IAI.01528-06
- Islam Z, Gray JS, Pestka JJ. 2006. p38 Mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes. Toxicol. Appl. Pharmacol. 213: 235-244. https://doi.org/10.1016/j.taap.2005.11.001
- Iordanov MS, Pribnow D, Magun JL, Dinh TH, Pearson JA, Chen SL, et al. 1997. Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol. Cell Biol. 17: 3373-3381. https://doi.org/10.1128/MCB.17.6.3373
- Shifrin VI, Anderson P. 1999. Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J. Biol. Chem. 274: 13985-13992. https://doi.org/10.1074/jbc.274.20.13985
- Park SH, Choi HJ, Yang H, Do KH, Kim J, Moon Y. 2010. Repression of peroxisome proliferator-activated receptor gamma by mucosal ribotoxic insult-activated CCAAT/enhancer-binding protein homologous protein. J. Immunol. 185: 5522-5530. https://doi.org/10.4049/jimmunol.1001315
- Zhou HR, Lau AS, Pestka JJ. 2003. Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenolinduced ribotoxic stress response. Toxicol. Sci. 74: 335-344. https://doi.org/10.1093/toxsci/kfg148
- Laskin JD, Heck DE, Laskin DL. 2002. The ribotoxic stress response as a potential mechanism for MAP kinase activation in xenobiotic toxicity. Toxicol. Sci. 69: 289-291. https://doi.org/10.1093/toxsci/69.2.289
- Birgersdotter A, Sandberg R, Ernberg I. 2005. Gene expression perturbation in vitro--a growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol. 15: 405-412.
- Edmondson R, Broglie JJ, Adcock AF, Yang L. 2014. Threedimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12: 207-218. https://doi.org/10.1089/adt.2014.573
- Kim JB. 2005. Three-dimensional tissue culture models in cancer biology. Semin. Cancer Biol. 15: 365-377.
- Choi HJ, Kim J, Do KH, Park SH, Moon Y. 2013. Prolonged NF-kappaB activation by a macrophage inhibitory cytokine 1-linked signal in enteropathogenic Escherichia coli-infected epithelial cells. Infect. Immun. 81: 1860-1869. https://doi.org/10.1128/IAI.00162-13
-
Fluckiger A, Dumont A, Derangere V, Rebe C, de Rosny C, Causse S, et al. 2016. Inhibition of colon cancer growth by docosahexaenoic acid involves autocrine production of TNF
${\alpha}$ . Oncogene 35: 4611-4622. https://doi.org/10.1038/onc.2015.523 - Howard A, Tahir I, Javed S, Waring SM, Ford D, Hirst BH. 2010. Glycine transporter GLYT1 is essential for glycine-mediated protection of human intestinal epithelial cells against oxidative damage. J. Physiol. 588: 995-1009. https://doi.org/10.1113/jphysiol.2009.186262
- Oh CK, Lee SJ, Park SH, Moon Y. 2016. Acquisition of chemoresistance and other malignancy-related features of colorectal cancer cells are incremented by Ribosome-inactivating stress. J. Biol. Chem. 291: 10173-10183. https://doi.org/10.1074/jbc.M115.696609