References
-
Ezemaduka AN, Yu J, Shi X, Zhang K, Yin CC, Fu X, et al. 2014. A small heat shock protein enables Escherichia coli to grow at a lethal temperature of
$50^{\circ}C$ conceivably by maintaining cell envelope integrity. J. Bacteriol. 196: 2004-2011. https://doi.org/10.1128/JB.01473-14 - Liu D, Lu Z, Mao Z, Liu S. 2009. Enhanced thermotolerance of E. coli by expressed OsHsp90 from rice (Oryza sativa L.). Curr. Microbiol. 58: 129-133. https://doi.org/10.1007/s00284-008-9288-4
- Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodriguez-Carmona E, Baumann K, et al. 2008. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb. Cell Fact. 7: 11. https://doi.org/10.1186/1475-2859-7-11
- Zhang X, Liu Y, Genereux JC, Nolan C, Singh M, Kelly JW. 2014. Heat-shock response transcriptional program enables high-yield and high-quality recombinant protein production in Escherichia coli. ACS Chem. Biol. 9: 1945-1949. https://doi.org/10.1021/cb5004477
- Arsene F, Tomoyasu T, Bukau B. 2000. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 55: 3-9. https://doi.org/10.1016/S0168-1605(00)00206-3
- Gross CA. 1996. Function and regulation of the heat shock proteins, pp. 1382-1399. In Neidhardt FC (ed.), Escherichia coli and Salmonella, Ed. ASM Press, Washington.
- Martinez-Alonso M, Garcia-Fruitos E, Ferrer-Miralles N, Rinas U, Villaverde A. 2010. Side effects of chaperone gene co-expression in recombinant protein production. Microb. Cell Fact. 9: 64. https://doi.org/10.1186/1475-2859-9-64
- Kolaj O, Spada S, Robin S, Wall JG. 2009. Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb. Cell Fact. 8: 9. https://doi.org/10.1186/1475-2859-8-9
-
Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA. 2006. Regulon and promoter analysis of the E. coli heatshock factor,
${\sigma}^{32}$ , reveals a multifaceted cellular response to heat stress. Genes Dev. 20: 1776-1789. https://doi.org/10.1101/gad.1428206 - Shimada T, Tanaka K, Ishihama A. 2017. The whole set of the constitutive promoters recognized by four minor sigma subunits of Escherichia coli RNA polymerase. PLoS One 12: e0179181. https://doi.org/10.1371/journal.pone.0179181
- Peabody MA, Laird MR, Vlasschaert C, Lo R, Brinkman F S. 2016. PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res. 44: D663-668. https://doi.org/10.1093/nar/gkv1271
- Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, et al. 2008. Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9: 102. https://doi.org/10.1186/1471-2164-9-102
- Kozlov G, Elias D, Semesi A, Yee A, Cygler M, Gehring K. 2004. Structural similarity of YbeD protein from Escherichia coli to allosteric regulatory domains. J. Bacteriol. 186: 8083-8088. https://doi.org/10.1128/JB.186.23.8083-8088.2004
- Yoon SH, Jeong H, Kwon S-K, Kim JF. 2009. Genomics, biological features, and biotechnological applications of Escherichia coli B: "Is B for better?!", pp. 1-17. Systems Biology and Biotechnology of Escherichia coli, Ed. Springer, Berlin, Germany
- Choi JH, Keum KC, Lee SY. 2006. Production of recombinant proteins by high cell density culture of Escherichia coli Chem. Eng. Sci. 61: 876-885. https://doi.org/10.1016/j.ces.2005.03.031
- Studier FW, Moffatt BA. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113-130. https://doi.org/10.1016/0022-2836(86)90385-2
- Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
- Kim SK, Lee DH, Kim OC, Kim J F, Yoon SH. 2017. Tunable control of an Escherichia coli expression system for the overproduction of membrane proteins by titrated expression of a mutant lac repressor. ACS Synth. Biol. 6: 1766-1773. https://doi.org/10.1021/acssynbio.7b00102
- Kim S, Jeong H, Kim EY, Kim JF, Lee SY, Yoon SH. 2017. Genomic and transcriptomic landscape of Escherichia coli BL21(DE3). Nucleic Acids Res. 45: 5285-5293. https://doi.org/10.1093/nar/gkx228
-
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the
$2^{-{\Delta}{\Delta}C_T}$ Method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262 - Schagger H. 2006. Tricine-SDS-PAGE. Nat. Protoc. 1: 16-22. https://doi.org/10.1038/nprot.2006.4
- Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. 2017. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 45: D507-d516. https://doi.org/10.1093/nar/gkw929
- Durfee T, Nelson R, Baldwin S, Plunkett G, 3rd, Burland V, Mau B, et al. 2008. The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J. Bacteriol. 190: 2597-2606. https://doi.org/10.1128/JB.01695-07
- Bukau B, Walker GC. 1989. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J. Bacteriol. 171: 2337-2346. https://doi.org/10.1128/jb.171.5.2337-2346.1989
- Teleha MA, Miller AC, Larsen RA. 2013. Overexpression of the Escherichia coli TolQ protein leads to a null-FtsN-like division phenotype. Microbiologyopen 2: 618-632. https://doi.org/10.1002/mbo3.101
- Herendeen SL, VanBogelen RA, Neidhardt FC. 1979. Levels of major proteins of Escherichia coli during growth at different temperatures. J. Bacteriol. 139: 185-194. https://doi.org/10.1128/JB.139.1.185-194.1979
- Ron EZ, Davis BD. 1971. Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J. Bacteriol. 107: 391-396. https://doi.org/10.1128/JB.107.2.391-396.1971
- Ron EZ, Shani M. 1971. Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase. J. Bacteriol. 107: 397-400. https://doi.org/10.1128/JB.107.2.397-400.1971
- Jordan SW, Cronan JE, Jr. 2003. The Escherichia coli lipB gene encodes lipoyl (octanoyl)-acyl carrier protein:protein transferase. J. Bacteriol. 185: 1582-1589. https://doi.org/10.1128/JB.185.5.1582-1589.2003
- Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2: 2006 0008.
- Fayet O, Ziegelhoffer T, Georgopoulos C. 1989. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171: 1379-1385. https://doi.org/10.1128/jb.171.3.1379-1385.1989
- Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, et al. 1999. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97: 755-765. https://doi.org/10.1016/S0092-8674(00)80787-4
- Wick LM, Egli T. 2004. Molecular components of physiological stress responses in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 89: 1-45.
- Wagner S, Baars L, Ytterberg AJ, Klussmeier A, Wagner CS, Nord O, et al. 2007. Consequences of membrane protein overexpression in Escherichia coli. Mol. Cell. Proteomics 6: 1527-1550. https://doi.org/10.1074/mcp.M600431-MCP200