DOI QR코드

DOI QR Code

A Multilayer Perceptron-Based Electric Load Forecasting Scheme via Effective Recovering Missing Data

효과적인 결측치 보완을 통한 다층 퍼셉트론 기반의 전력수요 예측 기법

  • 문지훈 (고려대학교 전기전자공학과) ;
  • 박성우 (고려대학교 전기전자공학과) ;
  • 황인준 (고려대학교 전기전자공학과)
  • Received : 2018.10.05
  • Accepted : 2018.10.29
  • Published : 2019.02.28

Abstract

Accurate electric load forecasting is very important in the efficient operation of the smart grid. Recently, due to the development of IT technology, many works for constructing accurate forecasting models have been developed based on big data processing using artificial intelligence techniques. These forecasting models usually utilize external factors such as temperature, humidity and historical electric load as independent variables. However, due to diverse internal and external factors, historical electrical load contains many missing data, which makes it very difficult to construct an accurate forecasting model. To solve this problem, in this paper, we propose a random forest-based missing data recovery scheme and construct an electric load forecasting model based on multilayer perceptron using the estimated values of missing data and external factors. We demonstrate the performance of our proposed scheme via various experiments.

정확한 전력수요 예측은 스마트 그리드의 효율적인 운영에 있어 매우 중요하다. 최근 IT 기술이 획기적으로 발전되면서, 인공지능 기법을 이용한 빅 데이터 처리를 기반으로 정확한 전력수요를 예측하는 많은 연구가 진행되고 있다. 이러한 예측 모델은 주로 외부 요인과 과거 전력수요를 독립 변수로 사용한다. 하지만, 다양한 내부적 또는 외부적 원인으로 전력수요 데이터의 결측치가 발생하게 되면 정확한 예측 모델을 구성하기가 어렵다. 이에 본 논문에서는 랜덤 포레스트 기반의 결측치 데이터 보완 기법을 제안하고, 보완된 데이터를 기반으로 한 다층 퍼셉트론 기반의 전력수요 예측 모델을 구성한다. 다양한 실험을 통해 제안된 기법의 예측 성능을 입증한다.

Keywords

JBCRJM_2019_v8n2_67_f0001.png 이미지

Fig. 1. Our Framework for Short-Term Load Forecasting

JBCRJM_2019_v8n2_67_f0002.png 이미지

Fig. 2. Architecture of Multilayer Perceptron for Our Forecasting Model

JBCRJM_2019_v8n2_67_f0003.png 이미지

Fig. 3. Feature Importances in Random Forest

JBCRJM_2019_v8n2_67_f0004.png 이미지

Fig. 4. Recovering Missing Values Using the Random Forest

JBCRJM_2019_v8n2_67_f0005.png 이미지

Fig. 5. Short-Term Electric Load Forecasting

Table 1. Season & Time-Period Classification

JBCRJM_2019_v8n2_67_t0001.png 이미지

Table 3. 10-Fold Cross Validation

JBCRJM_2019_v8n2_67_t0002.png 이미지

Table 4. Split Data into Training and Test Set

JBCRJM_2019_v8n2_67_t0003.png 이미지

Table 5. RMSE(MAE) Results with Multilayer Perceptron

JBCRJM_2019_v8n2_67_t0004.png 이미지

Table 6. RMSE(MAE) Distribution for Each Model

JBCRJM_2019_v8n2_67_t0005.png 이미지

Table 2. SVR/ANN Model Configuration

JBCRJM_2019_v8n2_67_t0006.png 이미지

References

  1. C. Fan, F. Xiao, S. Y. Hea, and Y. Zhao, "A short-term building cooling load prediction method using deep learning algorithms," Applied Energy, Vol.195, pp.222-233, 2017. https://doi.org/10.1016/j.apenergy.2017.03.064
  2. A. Dedinec, S. Filiposka, A. Dedinec, and L. Kocarev, "Deep belief network based electricity load forecasting: An analysis of Macedonian case," Energy, Vol.115, pp.1688-1700, 2016. https://doi.org/10.1016/j.energy.2016.07.090
  3. H. Chitsaz, H. Shaker, H. Zareipour, D. Wood, and N. Amjady, "Short-term electricity load forecasting of building in microgrids," Energy and Buildings, Vol.99, pp.50-60, 2015. https://doi.org/10.1016/j.enbuild.2015.04.011
  4. W. Lee, J. Jung, and M. Lee, "Development of 24-hour Optimal Scheduling Algorithm for Energy Storage System using Load Forecasting and Renewable Energy Forecasting," in Proceedings of the IEEE Power & Energy Society General Meeting, Chicago, pp.1-5, 2017.
  5. J. Moon, K.-H. Kim, and E. Hwang, "A Short-Term Electric Load Forecasting Scheme Using 2-Stage Predictive Analytics," in Proceedings of the IEEE International Conference on Big Data and Smart Computing, Shanghai, pp.219-226, 2018.
  6. W.-W. Kim, J.-S. Shin, and J.-O. Kim, "Operation Strategy of Multi-Energy Storage System for Ancillary Services," IEEE Transactions on Power Systems, Vol.32, No.6, pp.4409-4417, 2017. https://doi.org/10.1109/TPWRS.2017.2665669
  7. S. Ryu, J. Noh, and H. Kim, "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, Vol.10, No.1, pp.1-20, 2017. https://doi.org/10.3390/en10010001
  8. T. Niet et al., "Hedging the risk of increased emissions in long term energy planning," Energy Strategy Reviews, Vol.16, pp.1-12, 2017. https://doi.org/10.1016/j.esr.2017.02.001
  9. Y.-M. Wi, S. Kong, J. Lee, and S.-K. Joo, "Demand-Side Management Program Planning Using Stochastic Load Forecasting with Extreme Value Theory," Journal of Electrical Engineering & Technology, Vol.11, No.5, pp.1093-1099, 2016. https://doi.org/10.5370/JEET.2016.11.5.1093
  10. T. Hong and S. Fan, "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Vol.32, No.3, pp.914-938, 2016. https://doi.org/10.1016/j.ijforecast.2015.11.011
  11. X. Ke, A. Jiang, and N. Lu, "Load Profile Analysis and Short-term Building Load Forecast for a University Campus," in Proceedings of the IEEE Power & Energy Society General Meeting, Boston, pp.1-5, 2016.
  12. B. Zhang, J.-L. Wu, and P.-C. Chang, "A multiple time series-based recurrent neural network for short-term load forecasting," Soft Computing, Vol.22, No.12, pp.4099-4112, 2018. https://doi.org/10.1007/s00500-017-2624-5
  13. S. Park, J. Moon, and E. Hwang, "A Comparison of Various Machine Learning Techniques for Missing Values Recovering in Load Prediction," in Proceedings of the KSIC Spring Conference, Busan, pp.1-2, 2018.
  14. J. Moon, S. Jun, J. Park, Y.-H. Choi, and E. Hwang, "An Electric Load Forecasting Scheme for University Campus Buildings Using Artificial Neural Network and Support Vector Regression," KIPS Transactions on Computer and Communication Systems, Vol.5, No.10, pp.293-302, 2016. https://doi.org/10.3745/KTCCS.2016.5.10.293
  15. J. Park, J. Moon, and E. Hwang, "An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network," KIPS Transactions on Software and Data Engineering, Vol.6, No.11, pp.527-536, 2017. https://doi.org/10.3745/KTSDE.2017.6.11.527
  16. B. Yildiz, J. I. Bilbao, and A. B. Sproul, "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Vol.73, pp.1104-1122, 2017. https://doi.org/10.1016/j.rser.2017.02.023
  17. M. Q. Raza and A. Khosravi, "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings," Renewable and Sustainable Energy Reviews, Vol.50, pp.1352-1372, 2015. https://doi.org/10.1016/j.rser.2015.04.065
  18. L. Hernandez et al., "A Survey on Electric Power Demand Forecasting: Future Trends in Smart Grids, Microgrids and Smart Buildings," IEEE Communications Surveys & Tutorials, Vol.16, No.3, pp.1460-1495, 2014. https://doi.org/10.1109/SURV.2014.032014.00094
  19. A. Almalaq and G. Edwards, "A Review of Deep Learning Methods Applied on Load Forecasting," in Proceedings of the IEEE International Conference on Machine Learning and Applications, Cancun, pp.511-516, 2017.
  20. M. R. Sarkar, M. G. Rabbani, A. R. Khan, and M. M. Hossain, "Electricity Demand Forecasting of Rajshahi City in Bangladesh Using Fuzzy Linear Regression Model," in Proceedings of the International Conference on Electrical Engineering and Information Communication Technology, Dhaka, pp.1-3, 2015.
  21. G. Dudek, "Pattern-based local linear regression models for short-term load forecasting," Electric Power System Research, Vol.130, pp.139-147, 2016. https://doi.org/10.1016/j.epsr.2015.09.001
  22. A. Gerossier, R. Girard, G. Kariniotakis, and A. Michiorri, "Probabilistic Day-Ahead Forecasting of Household Electricity Demand," CIRED - Open Access Proceedings Journal, Vol.2017, No.1, pp.2500-2504, 2017. https://doi.org/10.1049/oap-cired.2017.0625
  23. A. S. Ahmad et al., "A review on applications of ANN and SVM for building electrical energy consumption forecasting," Renewable and Sustainable Energy Reviews, Vol.33, pp.102-109, 2014. https://doi.org/10.1016/j.rser.2014.01.069
  24. R. K. Jain, K. M. Smith, P. J. Culligan, and J. E. Taylor, "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Vol.123, pp.168-178, 2014. https://doi.org/10.1016/j.apenergy.2014.02.057
  25. L. Ghelardoni, A. Ghio, and D. Anguita, "Energy Load Forecasting Using Empirical Mode Decomposition and Support Vector Regression," IEEE Transactions on Smart Grid, Vol.4, No.1, pp.549-556, 2013. https://doi.org/10.1109/TSG.2012.2235089
  26. K. Grolinger, A. L'Heureux, M. A. M. Capretz, and L. Seewald, "Energy Forecasting for Event Venues: Big Data and Prediction Accuracy," Energy and Buildings, Vol.112, pp.222-233, 2016. https://doi.org/10.1016/j.enbuild.2015.12.010
  27. S. Jurado, A. Nebot, F. Mugica, and N. Avellana, "Hybrid methodologies for electricity load forecasting: Entropy-based feature selection with machine learning and soft computing techniques," Energy, Vol.86, pp.276-291, 2015. https://doi.org/10.1016/j.energy.2015.04.039
  28. A. Bagnasco, F. Fresi, M. Saviozzi, F. Silvestro, and A. Vinci, "Electrical consumption forecasting in hospital facilities: An application case," Energy and Buildings, Vol.103, pp.261-270, 2015. https://doi.org/10.1016/j.enbuild.2015.05.056
  29. N. Zeng, H. Zhang, W. Liu, J. Liang, and F. E. Alsaadi, "A switching delayed PSO optimized extreme learning machine for short-term load forecasting," Neurocomputing, Vol.240, pp.175-182, 2017. https://doi.org/10.1016/j.neucom.2017.01.090
  30. S. S. Reddy, "Bat algorithm-based back propagation approach for short-term load forecasting considering weather factors," Electrical Engineering, Vol.100, No.3, pp.1297-1303, 2018. https://doi.org/10.1007/s00202-017-0587-2
  31. M. Abdel-Nasser and K. Mahmoud, "Accurate photovoltaic power forecasting models using deep LSTM-RNN," Neural Computing and Applications, pp.1-14, 2017.
  32. W. Kong et al., "Short-Term Residential Load Forecasting based on LSTM Recurrent Neural Network," IEEE Transactions on Smart Grid, pp.1-11, 2017.
  33. P.-H. Kuo and C.-J. Huang, "A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting," Energies, Vol.11, No.1, pp.1-13, 2018. https://doi.org/10.3390/en11010001
  34. F. Tang and H. Ishwaran, "Random forest missing data algorithms," Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol.10, No.6, pp.363-377, 2017. https://doi.org/10.1002/sam.11348
  35. M. W. Ahmad, M. Mourshed, and Y. Rezgui, "Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption," Energy and Buildings, Vol.147, pp.77-89, 2017. https://doi.org/10.1016/j.enbuild.2017.04.038
  36. K.-H. Kim, R.-J. Park, S.-W. Jo, and K.-B. Song, "24-Hour Load Forecasting Algorithm Using Artificial Neural Network in Summer Weekdays," Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, Vol.31, No.12, pp.113-119, 2017. https://doi.org/10.5207/JIEIE.2017.31.12.113
  37. G. Panchal, A. Ganatra, Y. P. Kosta, and D. Panchal, "Behaviour Analysis of Multilayer Perceptrons with Multiple Hidden Neurons and Hidden Layers," International Journal of Computer Theory and Engineering, Vol.3, No.2, pp.332-337, 2011.
  38. G. Hinton, N. Srivastava, and K. Swersky, Lecture 6aoverview of mini-batch gradient descent [Internet], https://class.coursera.org/neuralnets-2012-001/lecture.
  39. J. Niu, J. Chen, and Y. Xu, "Twin support vector regression with Huber loss," Journal of Intelligent and Fuzzy Systems, Vol.32, No.6, pp.4247-4258, 2017. https://doi.org/10.3233/JIFS-16629
  40. T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, "How Many Trees in a Random Forest?" in International Workshop on Machine Learning and Data Mining in Pattern Recognition, Springer, Berlin, Heidelberg, pp.154-168, 2012.
  41. F. Pedregosa et al., "Scikit-learn: Machine learning in Python," Journal of Machine Learning Research, Vol.12, pp.2825-2830, 2011.
  42. M. Abadi et al., "Tensorflow: a system for large-scale machine learning," OSDI, Vol.16. pp.265-283, 2016.