DOI QR코드

DOI QR Code

Immune Response of BALB/c Mice toward Putative Calcium Transporter Recombinant Protein of Trichomonas vaginalis

  • Mendoza-Oliveros, Tahali (Laboratorio de Bioquimica y Genetica Molecular, Facultad de Quimica de la Universidad Autonoma de Yucatan) ;
  • Arana-Argaez, Victor (Laboratorio de Farmacologia, Facultad de Quimica de la Universidad Autonoma de Yucatan) ;
  • Alvarez-Sanchez, Leidi C. (Laboratorio de Virologia, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi" de la Universidad Autonoma de Yucatan) ;
  • Lara-Riegos, Julio (Laboratorio de Bioquimica y Genetica Molecular, Facultad de Quimica de la Universidad Autonoma de Yucatan) ;
  • Alvarez-Sanchez, Maria Elizbeth (Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico (UACM)) ;
  • Torres-Romero, Julio C. (Laboratorio de Bioquimica y Genetica Molecular, Facultad de Quimica de la Universidad Autonoma de Yucatan)
  • Received : 2018.08.11
  • Accepted : 2018.12.23
  • Published : 2019.02.28

Abstract

Trichomoniasis is a common sexually transmitted infection caused by Trichomonas vaginalis, which actually does not exist a vaccine for control or prevention. Thus, the identification of new and potent immunogens in T. vaginalis, which can contribute to the development of a vaccine against this parasite, is necessary. Therefore, the aim of this work was to evaluate the potential of a recombinant Transient Receptor Potential-like channel of T. vaginalis (TvTRPV), as a promising immunogen in BALB/c mice. First, TvTRPV was cloned and expressed as a recombinant protein in Escherichia coli BL21 cells and purified by nickel affinity. Next, BALB/c mice were immunized and the antibody levels in mice serum and cytokines from the supernatant of macrophages and from co-culture systems were evaluated. Recombinant TvTRPV triggered high levels of specific total IgG in sera from the immunized mice. Also, a statistically significant increase of cytokines: $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ after stimulation with the corresponding antigens in vitro, was identified. Moreover, co-cultures using $CD4^+$ T cells from immunized mice were able to identify higher levels of IL-10 and $IFN-{\gamma}$. These results were useful to validate the immunogenicity of TvTRPV in BALB/c mice, where IL-10-$IFN-{\gamma}$-secreting cells could play a role in infection control, supporting the potential of TvTRPV as a promising target for vaccine against T. vaginalis.

Keywords

References

  1. Menezes CB, Frasson AP, Tasca T. Trichomoniasis - are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microb Cell 2016; 3: 404-419. https://doi.org/10.15698/mic2016.09.526
  2. Kissinger P, Adamski A. Trichomoniasis and HIV interactions: a review. Sex Transm Infect 2013; 89: 426-433. https://doi.org/10.1136/sextrans-2012-051005
  3. Lazenby GB, Taylor PT, Badman BS, McHaki E, Korte JE, Soper DE, Young Pierce J. An association between Trichomonas vaginalis and high-risk human papillomavirus in rural Tanzanian women undergoing cervical cancer screening. Clin Ther 2014; 36: 38-45. https://doi.org/10.1016/j.clinthera.2013.11.009
  4. Cudmore SL, Delgaty KL, Hayward-McClelland SF, Petrin DP, Garber GE. Treatment of infections caused by metronidazole-resistant Trichomonas vaginalis. Clin Microbiol Rev 2004; 17: 783-793. https://doi.org/10.1128/CMR.17.4.783-793.2004
  5. Xie YT, Gao JM, Wu YP, Tang P, Hide G, Lai DH, Lun ZR. Recombinant $\alpha$-actinin subunit antigens of Trichomonas vaginalis as potential vaccine candidates in protecting against trichomoniasis. Parasit Vectors 2017; 10: 83. https://doi.org/10.1186/s13071-017-2009-8
  6. Paintlia MK, Kaur S, Gupta I, Ganguly NK, Mahajan RC, Malla N. Specific IgA response, T-cell subtype and cytokine profile in experimental intravaginal trichomoniasis. Parasitol Res 2002; 88: 338-343. https://doi.org/10.1007/s004360100396
  7. Rosinha GM, Freitas DA, Miyoshi A, Azevedo V, Campos E, Cravero SL, Rossetti O, Splitter G, Oliveira SC. Identification and characterization of a Brucella abortus ATP-binding cassette transporter homolog to Rhizobium meliloti ExsA and its role in virulence and protection in mice. Infect Immun 2002; 70: 5036-5044. https://doi.org/10.1128/IAI.70.9.5036-5044.2002
  8. Garmory HS, Titball RW. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun 2004; 72: 6757-6763. https://doi.org/10.1128/IAI.72.12.6757-6763.2004
  9. Jomaa M, Yuste J, Paton JC, Jones C, Dougan G, Brown JS. Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae. Infect Immun 2005; 73: 6852-6859. https://doi.org/10.1128/IAI.73.10.6852-6859.2005
  10. Wilkinson TC, Gardener MJ, Williams WA. Discovery of functional antibodies targeting ion channels. J Biomol Screen 2015; 20: 454-467. https://doi.org/10.1177/1087057114560698
  11. Clapham DE. TRP channels as cellular sensors. Nature 2003; 426: 517-524. https://doi.org/10.1038/nature02196
  12. Prole DL, Taylor CW. Identification of intracellular and plasma membrane calcium channel homologues in pathogenic parasites. PLoS One 2011; 6: e26218. https://doi.org/10.1371/journal.pone.0026218
  13. Han H, Yi F. New insights into TRP channels: Interaction with pattern recognition receptors. Channels (Austin) 2014; 8: 13-19. https://doi.org/10.4161/chan.27178
  14. Lee KJ, Wang W, Padaki R, Bi V, Plewa CA, Gavva NR. Mouse monoclonal antibodies to transient receptor potential ankyrin 1 Act as antagonists of multiple modes of channel activation. J Pharm Exp Ther 2014; 350: 223-231. https://doi.org/10.1124/jpet.114.215574
  15. Fernandez KG, Alvarez-Sanchez ME, Arana-Argaez VE, Alvarez-Sanchez LC, Lara-Riegos JC, Torres-Romero JC. Genome-wide identification, in silico characterization and expression analysis of ZIP-like genes from Trichomonas vaginalis in response to Zinc and Iron. Biometals 2017; 30: 663-675. https://doi.org/10.1007/s10534-017-0034-x
  16. Arana-Argaez VE, Chan-Zapata I, Canul-Canche J, Fernandez-Martin K, Martin-Quintal Z, Torres-Romero JC, Coral-Martinez TI, Lara-Riegos JC, Ramirez-Camacho MA. Immunosuppresive effects of the methanolic extract of Chrysophyllum cainito leaves on macrophage functions. Afr J Tradit Complement Altern Med 2016; 14: 179-186. https://doi.org/10.21010/ajtcam.v14i1.20
  17. Stagg AJ, Burke F, Hill S, Knight SC. Isolation of mouse spleen dendritic cells. Methods Mol Med 2001; 64: 9-22. https://doi.org/10.1385/1-59259-150-7:9
  18. Abraham MC, Desjardins M, Filion LG, Garber GE. Inducible immunity to Trichomonas vaginalis in a mouse model of vaginal infection. Infect Immun 1996; 64: 3571-3575. https://doi.org/10.1128/IAI.64.9.3571-3575.1996
  19. Smith JD, Garber GE. Trichomonas vaginalis infection induces vaginal CD4+ T-Cell infiltration in a mouse model: a vaccine strategy to reduce vaginal infection and HIV Transmission. J Infect Dis 2015; 212: 285-293. https://doi.org/10.1093/infdis/jiv036
  20. Han IH, Goo SY, Park SJ, Hwang SJ, Kim YS, Yang MS, Ahn MH, Ryu JS. Proinflammatory cytokine and nitric oxide production by human macrophages stimulated with Trichomonas vaginalis. Korean J Parasitol 2009; 47: 205-212. https://doi.org/10.3347/kjp.2009.47.3.205
  21. Koo SJ, Chowdhury IH, Szczesny B, Wan X, Garg NJ. Macrophages promote oxidative metabolism to drive nitric oxide generation in response to Trypanosoma cruzi. Infect Immun 2016; 84: 3527-3541. https://doi.org/10.1128/IAI.00809-16
  22. Filardy AA, Costa-da-Silva AC, Koeller CM, Guimaraes-Pinto K, Ribeiro-Gomes FL, Lopes MF, Heise N, Freire-de-Lima CG, Nunes MP, DosReis GA. Infection with Leishmania major induces a cellular stress response in macrophages. PLoS One 2014; 9: e85715. https://doi.org/10.1371/journal.pone.0085715
  23. Nemati M, Malla N, Yadav M, Khorramdelazad H, Jafarzadeh A. Humoral and T cell-mediated immune response against trichomoniasis. Parasite Immunol 2018; 40: e12510. https://doi.org/10.1111/pim.12510
  24. Park GC, Ryu JS, Min DY. The role of nitric oxide as an effector of macrophage-mediated cytotoxicity against Trichomonas vaginalis. Korean J Parasitol 1997; 35: 189-195. https://doi.org/10.3347/kjp.1997.35.3.189
  25. Murai M, Turovkaya O, Kim G, Madan R, Karp CL, Cheroutre H, Kronenberg M. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 2009; 10: 1178-1184. https://doi.org/10.1038/ni.1791

Cited by

  1. The Molecular Characterization and Immunity Identification of Trichomonas vaginalis Adhesion Protein 33 (AP33) vol.11, 2020, https://doi.org/10.3389/fmicb.2020.01433