DOI QR코드

DOI QR Code

Inhibitory Effect of Haplamine on Melanosome Transport and Its Mechanism of Action

  • Lee, Kyung Rhim (Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University) ;
  • Myung, Cheol Hwan (Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University) ;
  • Hwang, Jae Sung (Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University)
  • Received : 2019.12.22
  • Accepted : 2019.12.27
  • Published : 2019.12.30

Abstract

Melanosomes are specific melanin-containing intracellular organelles of epidermal melanocytes. In epidermal melanocytes, there are three kinds of key player proteins. Rab27a, melanophilin or Slac2-a and Myosin 5a form a tripartite complex connects the melanosome. Mature melanosomes make movements through the tripartite protein complex along actin filaments.In this study, we found that the haplamine (6-Methoxyflindersine) induced melanosome aggregation around the nucleus in epidermal melanocyte. In an attempt to elucidate the inhibitory effect of haplamine on melanosome transport, effect of haplamineon the expression level of Rab27a, melanophilin and Myosin 5a was measured. The results indicated that haplamine up to 5��M effectively suppressed mRNA and protein expression level of melanophilin.To determine the upstream regulator of melanophilin regulated by haplamine, we checked the level of MITF, c-JUN and USF1. Those are possible transcription factor of melanophilin. Among them,treatment of USF1 siRNA decreased mRNA and protein expression level of USF1 as well as melanophilin. Also, treatment of haplamine decreased mRNA and protein expression level of melanophilin as well as USF1 in a dose-dependent manner. Consequently, we found the inhibitory effect of haplamine on melanosome transport in melan-a melanocyte. Treatment of haplamine reduced melanophilin expression level which is a key protein of melanosome transport. We identified that USF1 could be a major transcription factor of melanophilin regulated by haplamine.

Keywords

References

  1. H. C. Huang, Y. C. Chou, C. Y. Wu, and T. M. Chang, [8]-gingerol inhibits melanogenesis in murine melanoma cells through down-regulation of the MAPK and PKA signal pathways, Biochem. Biophys. Res. Commun., 438(2), 375 (2013). https://doi.org/10.1016/j.bbrc.2013.07.079
  2. C. Wasmeier, A. N. Hume, G. Bolasco, and M. C. Seabra, Melanosomes at a glance, J. Cell. Sci., 121(24), 3995 (2008). https://doi.org/10.1242/jcs.040667
  3. V. J. Hearing, Biogenesis of pigment granules: A sensitive way to regulate melanocyte function, J. Dermatol. Sci., 37(1), 3 (2005). https://doi.org/10.1016/j.jdermsci.2004.08.014
  4. G. Raposo, M. S. Marks, Melanosomes-dark organelles enlighten endosomal membrane transport, Nat. Rev. Mol. Cell Biol., 8(10), 786 (2007). https://doi.org/10.1038/nrm2258
  5. M. Van Gele, B. Geusens, A. M. Schmitt, L. Aguilar, and J. Lambert, Knockdown of myosin va isoforms by RNAi as a tool to block melanosome transport in primary human melanocytes, J. Invest. Dermatol. 128(10), 2474 (2008). https://doi.org/10.1038/jid.2008.100
  6. K. Van Den Bossche, J. M. Naeyaert, and J. Lambert, The quest for the mechanism of melanin transfer, Traffic, 7(7), 769 (2006). https://doi.org/10.1111/j.1600-0854.2006.00425.x
  7. T. Passeron, P. Bahadoran, C. Bertolotto, C. Chiaverini, R. Busca, G. Valony, K. Bille, J. P. Ortonne, and R. Ballotti, Cyclic AMP promotes a peripheral distribution of melanosomes and stimulates melanophilin/Slac2-a and actin association, FASEB J., 18(9), 989 (2004). https://doi.org/10.1096/fj.03-1240fje
  8. J. S. Ramalho, V. S. Lopes, A. K. Tarafder, M. C. Seabra, and A. N. Hume, Myrip uses distinct domains in the cellular activation of myosin VA and myosin VIIA in melanosome transport, Pigment Cell Melanoma Res, 22(4), 461 (2009). https://doi.org/10.1111/j.1755-148X.2009.00567.x
  9. N. Ohbayashi, S. Mamishi, K. Ishibashi, Y. Maruta, B. Pourakbari, Tamizifar B, M. Mohammadpour, M. Fukuda, and N. Parvaneh, Functional characterization of two RAB27A missense mutations found in griscelli syndrome type 2, Pigment Cell Melanoma Res, 23(3), 365 (2010). https://doi.org/10.1111/j.1755-148X.2010.00705.x
  10. A. C. Figueiredo, C. Wasmeier, A. K. Tarafder, J. S. Ramalho, R. A. Baron, and M. C. Seabra, Rab3GEP is the non-redundant guanine nucleotide exchange factor for Rab27a in melanocytes, J. Biol. Chem., 283(34), 23209 (2008). https://doi.org/10.1074/jbc.M804134200
  11. G. Menasche, J. Feldmann, A. Houdusse, C. Desaymard, A. Fischer, B. Goud, G. de Saint Basile, Biochemical and functional characterization of Rab27a mutations occurring in griscelli syndrome patients, Blood, 101(7), 2736 (2003). https://doi.org/10.1182/blood-2002-09-2789
  12. M. Fukuda, T. S. Kuroda, Slac2-c (synaptotagmin-like protein homologue lacking C2 domains-c), a novel linker protein that interacts with Rab27, myosin va/VIIa, and actin, J. Biol. Chem., 277(45), 43096 (2002). https://doi.org/10.1074/jbc.M203862200
  13. M. T. Harper, M. T. J. van den Bosch, I. Hers, and A. W. Poole, Absence of platelet phenotype in mice lacking the motor protein myosin va, PLoS One, 8(1), e53239 (2013). https://doi.org/10.1371/journal.pone.0053239
  14. N. Ohbayashi, M. Fukuda, Role of rab family GTPases and their effectors in melanosomal logistics, J. Biochem., 151(4), 343 (2012). https://doi.org/10.1093/jb/mvs009
  15. X. S. Wu, K. Rao, H. Zhang, F. Wang, J. R. Sellers, L. E. Matesic, N. G. Copeland, N. A. Jenkins, and J. A. Hammer, Identification of an organelle receptor for myosin-va, Nat. Cell Biol., 4(4), 271 (2002). https://doi.org/10.1038/ncb760
  16. M. Sirito, S. Walker, Q. Lin, M. T. Kozlowski, W. H. Klein, and M. Sawadogo, Members of the USF family of helix-loop-helix proteins bind DNA as homoas well as heterodimers, Gene Expr., 2(3), 231 (1992).
  17. S. Corre S, M. Galibert, Upstream stimulating factors: Highly versatile stress‐responsive transcription factors, Pigment Cell Res., 18(5), 337 (2005). https://doi.org/10.1111/j.1600-0749.2005.00262.x
  18. P. M. Ismail, T. Lu, and M. Sawadogo, Loss of USF transcriptional activity in breast cancer cell lines, Oncogene, 18(40), 5582 (1999). https://doi.org/10.1038/sj/onc/1202932
  19. A. J. Bendall, P. L. Molloy, Base preferences for DNA binding by the bHLH-Zip protein USF: Effects of MgCl2 on specificity and comparison with binding of Myc family members, Nucleic Acids Res., 22(14), 2801 (1994).
  20. S. Corre, A. Primot, Y. Baron, J. Le Seyec, C. Goding, and M. D. Galibert, Target gene specificity of USF-1 is directed via p38-mediated phosphorylation-dependent acetylation, J. Biol. Chem., 284(28), 18851 (2009). https://doi.org/10.1074/jbc.M808605200
  21. S. Corre, A. Primot, E. Sviderskaya, D. C. Bennett, S. Vaulont, C. R. Goding, and M. D. Galibert, UV-induced expression of key component of the tanning process, the POMC and MC1R genes, is dependent on the p-38-activated upstream stimulating factor-1 (USF-1), J. Biol. Chem., 279(49), 51226 (2004). https://doi.org/10.1074/jbc.M409768200
  22. V. I. Akhmedzhanova, I. A. Bessonova, and S. Y. Yunusov, Alkaloids of Haplophyllum perforatum, Chemistry of Natural Compounds, 12(3), 282 (1976). https://doi.org/10.1007/BF00567798
  23. O. Jansen, V. Akhmedjanova, L. Angenot, G. Balansard, A. Chariot, E. Ollivier, M. Tits, and M. Frederich, Screening of 14 alkaloids isolated from Haplophyllum A. Juss. for their cytotoxic properties, J Ethnopharmacol, 105(1-2), 241 (2006).
  24. L. E. Matesic, R. Yip, A. E. Reuss, D. A. Swing, T. N. O'Sullivan, C. F. Fletcher, N. G. Copeland, and N. A. Jenkins, Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice, Proc. Natl. Acad. Sci. U. S. A., 98(18), 10238 (2001). https://doi.org/10.1073/pnas.181336698
  25. C. Levy, M. Khaled M, D. E. Fisher, MITF: Master regulator of melanocyte development and melanoma oncogene, Trends Mol Med, 12(9), 406 (2006). https://doi.org/10.1016/j.molmed.2006.07.008
  26. C. Chiaverini, L. Beuret, E. Flori, R. Busca, P. Abbe, K. Bille, P. Bahadoran, J. P. Ortonne, C. Bertolotto, and R. Ballotti, Microphthalmia-associated transcription factor regulates RAB27A gene expression and controls melanosome transport, J. Biol. Chem., 283(18), 12635 (2008). https://doi.org/10.1074/jbc.M800130200
  27. W. Englaro, R. Rezzonico, M. Durand-Clement, D. Lallemand, J. P. Ortonne, and R. Ballotti, Mitogen-activated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B-16 melanoma cells, J. Biol. Chem., 270(41), 24315 (1995). https://doi.org/10.1074/jbc.270.41.24315
  28. A. Behrens, M. Sibilia, and E. F. Wagner, Amino-terminal phosphorylation of c-jun regulates stress-induced apoptosis and cellular proliferation, Nat. Genet., 21(3), 326 (1999). https://doi.org/10.1038/6854
  29. E. N. Gurzov, L. Bakiri, J. M. Alfaro, E. F. Wagner, and M. Izquierdo, Targeting c-jun and JunB proteins as potential anticancer cell therapy, Oncogene, 27(5), 641 (2008). https://doi.org/10.1038/sj.onc.1210690
  30. M. G. Pezzolesi, K. M. Zbuk, K. A. Waite, and C. Eng, Comparative genomic and functional analyses reveal a novel cis-acting PTEN regulatory element as a highly conserved functional E-box motif deleted in cowden syndrome, Hum. Mol. Genet., 16(9), 1058 (2007). https://doi.org/10.1093/hmg/ddm053
  31. Y. Bu, I. H. Gelman, V-src-mediated down-regulation of SSeCKS metastasis suppressor gene promoter by the recruitment of HDAC1 into a USF1-Sp1-Sp3 complex, J. Biol. Chem., 282(37), 26725 (2007). https://doi.org/10.1074/jbc.M702885200
  32. J. P. Cogswell, M . M. Godlevski, M. Bonham, J. Bisi, and L. Babiss, Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter, Mol. Cell. Biol., 15(5), 2782 (1995). https://doi.org/10.1128/MCB.15.5.2782