DOI QR코드

DOI QR Code

Visualization of Phytophthora palmivora Infection in Oil Palm Leaflets with Fluorescent Proteins and Cell Viability Markers

  • Ochoa, Juan C. (Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA)) ;
  • Herrera, Mariana (Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA)) ;
  • Navia, Monica (Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA)) ;
  • Romero, Hernan Mauricio (Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA))
  • Received : 2018.02.28
  • Accepted : 2018.08.21
  • Published : 2019.02.01

Abstract

Bud rot (BR) is the most devastating disease affecting oil palm (Elaeis guineensis) crops in Colombia. Its causal agent, Phytophthora palmivora, initiates the infection in immature oil palm leaflets producing necrotic lesions, followed by colonization of opportunistic necrotrophs, which increases disease damage. To improve the characterization of the disease, we transformed P. palmivora using Agrobacterium tumefaciens-mediated transformation (ATMT) to include the fluorescent proteins CFP-SKL (peroxisomal localization), eGFP and mRFP1 (cytoplasmic localization). The stability of some transformants was confirmed by Southern blot analysis and single zoospore cultures; additionally, virulence and in vitro growth were compared to the wild-type isolate to select transformants with the greatest resemblance to the WT isolate. GFP-tagged P. palmivora was useful to identify all of the infective structures that are commonly formed by hemibiotrophic oomycetes, including apoplastic colonization and haustorium formation. Finally, we detected cell death responses associated with immature oil palm tissues that showed reduced susceptibility to P. palmivora infection, indicating that these tissues could exhibit age-related resistance. The aim of this research is to improve the characterization of the initial disease stages and generate cell biology tools that may be useful for developing methodologies for early identification of oil palm materials resistant or susceptible to BR.

Keywords

E1PPBG_2019_v35n1_19_f0002.png 이미지

Fig. 2. Fluorescence distribution observed in colonies transformed with eGFP, mRFP1 and CFP-SKL. Microscope slides were mounted with mycelia from a 5-day-old culture grown on 20%-V8 plates. The scale bar represents 25 μm.

E1PPBG_2019_v35n1_19_f0003.png 이미지

Fig. 3. GFP-labeled P. palmivora during colonization at different times in oil palm immature leaflets. A: Appressorium, GC: Germinating cyst, AH: Apoplastic hyphae, HS: Hyphal swelling, H: Haustorium, Sp: Sporangium. The scale bar represents 50 μm.

E1PPBG_2019_v35n1_19_f0004.png 이미지

Fig. 4. Necrotic lessons observed on immature leaflets inoculated with a WT and GFP-tagged P. palmivora. (A) Soft tissue from minus five leaf and rigid immature tissue from minus three leaf inoculated with P. palmivora, observed at four days post-inoculation. (B) Wounded or unwounded green spear leaflets four days after inoculation with P. palmivora. The red arrow shows the site that were wounded with a sterile syringe needle.

E1PPBG_2019_v35n1_19_f0005.png 이미지

Fig. 5. Cell death responses observed in distal and rigid parts of immature leaflets inoculated with a GFP-tagged transformant and counterstained with PI. (A) Proximal soft tissue inoculated at 24 hpi. (B) Germinating cysts of P. palmivora inoculated in a distal part of an immature leaflet at two hpi. (C), (D) Oil palm cell death responses in a rigid immature leaflet at 12 (C) and 48 (D) hpi, respectively. The scale bars represent 100 μm. A: Appressorium, GC: Germinating cyst, PpN: P. palmivora cell nucleus, EgN: Oil palm (E. guineensis) cell nucleus.

E1PPBG_2019_v35n1_19_f0006.png 이미지

Fig. 1. (A) Schematic representation of the T-DNA included in the binary plasmid pNPTII. FP: Fluorescent protein. (B) Representative evaluation of transformant colonies by Southern blot with nptII probe three months after transformation; a wild type (WT) isolate was used as a negative control. Dashed lines show the colonies selected for monosporic cultures. The bottom blot shows the hybridization obtained from colonies derived from different single zoospore cultures.

Table 1. List of primers used in this study

E1PPBG_2019_v35n1_19_t0001.png 이미지

Table 2. Number of transformant colonies obtained, discriminated by isolate, fluorescent protein and copy number determined by South-ern blot

E1PPBG_2019_v35n1_19_t0002.png 이미지

Table 3. Comparisons of colony diameter and lesson length in oil palm leaflets of different transformants

E1PPBG_2019_v35n1_19_t0003.png 이미지

References

  1. Abu-El Samen, F. M., Secor, G. and Gudmestad, N. 2003. Variability in virulence among asexual progenies of Phytophthora infestans. Phytopathology 93:293-304. https://doi.org/10.1094/PHYTO.2003.93.3.293
  2. Acevedo-Garcia, J., Kusch, S. and Panstruga, R. 2014. Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol. 204:273-281. https://doi.org/10.1111/nph.12889
  3. Ah-Fong, A. M. V. and Judelson, H. S. 2011. Vectors for fluorescent protein tagging in Phytophthora: tools for functional genomics and cell biology. Fungal Biol. 115:882-890. https://doi.org/10.1016/j.funbio.2011.07.001
  4. Blanco, F. A. and Judelson, H. S. 2005. A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol. Microbiol. 56:638-648. https://doi.org/10.1111/j.1365-2958.2005.04575.x
  5. Bos, J. I. B., Armstrong, M. R., Gilroy, E. M., Boevink, P. C., Hein, I., Taylor, R. M., Zhendong, T., Engelhardt, S., Vetukuri, R. R., Harrower, B., Dixelius, C., Bryan, G., Sadanandom, A., Whisson, S. C., Kamoun, S. and Birch, P. R. J. 2010. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc. Natl. Acad. Sci. U.S.A. 107:9909-9914. https://doi.org/10.1073/pnas.0914408107
  6. Bottin, A., Larche, L., Villalba, F., Gaulin, E., Esquerre-Tugaye, M. T. and Rickauer, M. 1999. Green fluorescent protein (GFP) as gene expression reporter and vital marker for studying development and microbe-plant interaction in the tobacco pathogen Phytophthora parasitica var. nicotianae. FEMS Microbiol. Lett. 176:51-56. https://doi.org/10.1111/j.1574-6968.1999.tb13641.x
  7. Bozkurt, T. O., Schornack, S., Win, J., Shindo, T., Ilyas, M., Oliva, R., Cano, L. M., Jones, A. M., Huitema, E., van der Hoorn, R. A. and Kamoun, S. 2011. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc. Natl. Acad. Sci. U.S.A. 108:20832-20837. https://doi.org/10.1073/pnas.1112708109
  8. Corley, R. and Tinker, P. 2015. The origin and development of the oil palm industry. In: The Oil Palm, eds. by R. Corley and P. Tinker, pp. 1-29. Wiley-Blackwell, NY, USA.
  9. Cvitanich, C. and Judelson, H. S. 2003. Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr. Genet. 42:228-235. https://doi.org/10.1007/s00294-002-0354-3
  10. Chaparro-Garcia, A., Wilkinson, R. C., Gimenez-Ibanez, S., Findlay, K., Coffey, M. D., Zipfel, C., Rathjen, J. P., Kamoun, S. and Schornack, S. 2011. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS One 6:e16608. https://doi.org/10.1371/journal.pone.0016608
  11. Chetty, V. J., Ceballos, N., Garcia, D., Narvaez-Vasquez, J., Lopez, W. and Orozco-Cardenas, M. L. 2013. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep. 32:239-247. https://doi.org/10.1007/s00299-012-1358-1
  12. Drenth, A., Torres, G. A. and Martinez, G. 2013. Phytophthora palmivora, la causa de la Pudricion del cogollo en la palma de aceite. Palmas 34:87-94 (in Spanish).
  13. Dunn, A. R., Fry, B. A., Lee, T. Y., Conley, K. D., Balaji, V., Fry, W. E., McLeod, A. and Smart, C. D. 2013. Transformation of Phytophthora capsici with genes for green and red fluorescent protein for use in visualizing plant-pathogen interactions. Aust. Plant Pathol. 42:583-593. https://doi.org/10.1007/s13313-013-0222-2
  14. Erwin, D. C. and Ribeiro, O. K. 1996. Phytophthora diseases worldwide. APS Press. St Paul, MN, USA. 592 pp.
  15. Fang, Y. and Tyler, B. M. 2016. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol. Plant Pathol. 17:127-139. https://doi.org/10.1111/mpp.12318
  16. Fedepalma. 2015. Anuario Estadistico 2014: La agroindustria de la palma de aceite en Colombia y en el mundo 2009-2013. Fedepalma, Bogota, D.C., Colombia. 176 pp (in Spanish).
  17. Ficke, A., Gadoury, D. M. and Seem, R. C. 2002. Ontogenic resistance and plant disease management: A case study of grape powdery mildew. Phytopathology 92:671-675. https://doi.org/10.1094/PHYTO.2002.92.6.671
  18. Frandsen, R. J. N. 2011. A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J. Microbiol. Methods 87:247-262. https://doi.org/10.1016/j.mimet.2011.09.004
  19. Goodwin, S. B., Drenth, A. and Fry, W. E. 1992. Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans. Curr. Genet. 22:107-115. https://doi.org/10.1007/BF00351469
  20. Hooykaas, P., Roobol, C. and Schilperoort, R. 1979. Regulation of the transfer of Ti plasmids of Agrobacterium tumefaciens. J. Gen. Microbiol. 110:99-109. https://doi.org/10.1099/00221287-110-1-99
  21. Huitema, E., Smoker, M. and Kamoun, S. 2011. A Straightforward protocol for electro-transformation of Phytophthora capsici zoospores. Methods Mol. Biol. 712:129-135. https://doi.org/10.1007/978-1-61737-998-7_11
  22. Jones, K., Kim, D. W., Park, J. S. and Khang, C. H. 2016. Livecell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae. BMC Plant Biol. 16:69. https://doi.org/10.1186/s12870-016-0756-x
  23. Judelson, H. S. and Ah-Fong, A. M. V. 2009. Progress and challenges in oomycete transformation. In: Oomycete genetics and genomics: diversity, interactions and research tools, eds. by K. Lamour and S. Kamoun, pp. 435-453. Wiley-Blackwell, NY, USA.
  24. Judelson, H. S., Tyler, B. M. and Michelmore, R. W. 1991. Transformation of the oomycete pathogen, Phytophthora infestans. Mol. Plant-Microbe Interact. 4:602-607. https://doi.org/10.1094/MPMI-4-602
  25. Judelson, H. S., Coffey, M. D., Arredondo, F. R. and Tyler, B. M. 1993. Transformation of the oomycete pathogen Phytophthora megasperma f. sp. glycinea occurs by DNA integration into single or multiple chromosomes. Curr. Genet. 23:211-218. https://doi.org/10.1007/BF00351498
  26. Kamoun, S., van West, P. and Govers, F. 1998. Quantification of late blight resistance of potato using transgenic Phytophthora infestans expressing ${\beta}$-glucuronidase. Eur. J. Plant Pathol. 104:521-525. https://doi.org/10.1023/A:1008698620906
  27. Keller, N. P., Bergstrom, G. C. and Yoder, O. C. 1990. Effects of genetic transformation on fitness of Cochliobolus heterostrophus. Phytopathology 80:1166-1173. https://doi.org/10.1094/Phyto-80-1166
  28. Latijnhouwers, M., Ligterink, W., Vleeshouwers, V. G. A. A., van West, P. and Govers, F. 2004. A $G{\alpha}$ subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol. Microbiol. 51:925-936. https://doi.org/10.1046/j.1365-2958.2003.03893.x
  29. Le Fevre, R., O'Boyle, B., Moscou, M. J. and Schornack, S. 2016. Colonization of barley by the broad-host hemibiotrophic pathogen Phytophthora palmivora uncovers a leaf development dependent involvement of MLO. Mol. Plant-Microbe Interact. 29:385-395. https://doi.org/10.1094/MPMI-12-15-0276-R
  30. Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., Llorente, F., Molina, A., Parker, J., Somerville, S. and Schulze-Lefert, P. 2005. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180-1183. https://doi.org/10.1126/science.1119409
  31. Martinez, G. 2009. Identificacion temprana y manejo integrado de la enfermedad Pudricion del cogollo. Palmas 30:63-77 (in Spanish).
  32. Martinez, G., Sarria, G. A., Torres, G. A. and Varon, F. 2010. Phytophthora palmivora es el agente causal de la pudricion del cogollo de la palma de aceite. Palmas 31:334-344 (in Spanish).
  33. Moreno-Chacon, A. L., Camperos-Reyes, J. E., Avila Diazgranados, R. A. and Romero, H. M. 2013. Biochemical and physiological responses of oil palm to bud rot caused by Phytophthora palmivora. Plant Physiol. Biochem. 70:246-251. https://doi.org/10.1016/j.plaphy.2013.05.026
  34. Navia, E. A., Avila, R. A., Daza, E. E., Restrepo, E. F. and Romero, H. M. 2014. Assessment of tolerance to bud rot in oil palm under field conditions. Eur. J. Plant Pathol. 140:711-720. https://doi.org/10.1007/s10658-014-0491-9
  35. Rey, T., Chatterjee, A., Buttay, M., Toulotte, J. and Schornack, S. 2015. Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen. New Phytol. 206:497-500. https://doi.org/10.1111/nph.13233
  36. Sarria, G. A., Torres, G. A., Aya, H. A., Ariza, J. G., Rodriguez, J., Velez, D. C., Varon, F. and Martinez, G. 2008. Phytophthora sp. es el responsable de las lesiones iniciales de la Pudricion del cogollo (PC) de la Palma de aceite en Colombia. Palmas 29:31-41 (in Spanish).
  37. Sarria, G., Martinez, G., Varon, F., Drenth, A. and Guest, D. I. 2015. Histopathological studies of the process of Phytophthora palmivora infection in oil palm. Eur. J. Plant Pathol. 145:39-51.
  38. Schena, L., Duncan, J. M. and Cooke, D. E. L. 2008. Development and application of a PCR-based 'molecular tool box' for the identification of Phytophthora species damaging forests and natural ecosystems. Plant Pathol. 57:64-75. https://doi.org/10.1111/j.1365-3059.2007.01689.x
  39. Schornack, S., van Damme, M., Bozkurt, T. O., Cano, L. M., Smoker, M., Thines, M., Gaulin, E., Kamoun, S. and Huitema, E. 2010. Ancient class of translocated oomycete effectors targets the host nucleus. Proc. Natl. Acad. Sci. U.S.A. 107:17421-17426. https://doi.org/10.1073/pnas.1008491107
  40. Shibata, Y., Kawakita, K. and Takemoto, D. 2010. Age-related resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthora infestans requires both ethyleneand salicylic acid-mediated signaling pathways. Mol. Plant-Microbe Interact. 23:1130-1142. https://doi.org/10.1094/MPMI-23-9-1130
  41. Si-Ammour, A., Mauch-Mani, B. and Mauch, F. 2003. Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker: ${\beta}$-aminobutyric acid but not BTH protects potato and Arabidopsis from infection. Mol. Plant Pathol. 4:237-248. https://doi.org/10.1046/j.1364-3703.2003.00168.x
  42. Suratman, A., Ughude, J. O. and Sismindari. 2013. Detection of nptII gene and 35SCaMV promoter in tomatoes (Solanum lycopersicum L.). J. Food Pharm. Sci. 1:10-13.
  43. Torres, G. A., Sarria, G. A., Varon, F., Coffey, M. D., Elliott, M. L. and Martinez, G. 2010. First report of bud rot caused by Phytophthora palmivora on African oil palm in Colombia. Plant Dis. 94:1163.
  44. Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A. and Guest, D. I. 2016. Bud rot caused by Phytophthora palmivora: A destructive emerging disease of oil palm. Phytopathology 106:320-329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW
  45. Tsushima, S., Hasebe, A., Komoto, Y., Carter, J. P., Miyashita, K., Yokoyama, K. and Pickup, R. W. 1995. Detection of genetically engineered microorganisms in paddy soil using a simple and rapid "nested" polymerase chain reaction method. Soil Biol. Biochem. 27:219-227. https://doi.org/10.1016/0038-0717(94)00162-T
  46. van West, P., Kamoun, S., van't Klooster, J. W. and Govers, F. 1999a. Internuclear gene silencing in Phytophthora infestans. Mol. Cell 3:339-348. https://doi.org/10.1016/S1097-2765(00)80461-X
  47. van West, P., Reid, B., Campbell, T. A., Sandrock, R. W., Fry, W. E., Kamoun, S. and Gow, N. A. R. 1999b. Green fluorescent protein (GFP) as a reporter gene for the plant pathogenic oomycete Phytophthora palmivora. FEMS Microbiol. Lett. 178:71-80. https://doi.org/10.1111/j.1574-6968.1999.tb13761.x
  48. Velez, D., Rodriguez, J., Mestizo, Y. A., Varon, F. and Martinez, G. 2013. Desarrollo de Phytophthora palmivora en foliolos inmaduros de palma de aceite inoculados en condiciones in vitro. Fitopatol. Colomb. 37:13-18 (in Spanish).
  49. Velez, D., Rodriguez, J., Varon, F. and Martinez, G. 2015. Seleccion de tejidos de palma de aceite para la evaluacion in vitro de Phytophthora palmivora agente causante de la pudricion del cogollo. Fitopatol. Colomb. 39:11-16 (in Spanish).
  50. Vijn, I. and Govers, F. 2003. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol. Plant Pathol. 4:459-467. https://doi.org/10.1046/j.1364-3703.2003.00191.x
  51. Wu, D., Navet, N., Liu, Y., Uchida, J. and Tian, M. 2016a. Establishment of a simple and efficient Agrobacterium-mediated transformation system for Phytophthora palmivora. BMC Microbiol. 16:204. https://doi.org/10.1186/s12866-016-0825-1
  52. Wu, L., Conner, R., Wang, X., Xu, R. and Li, H. 2016b. Variation in growth, colonization of maize, and metabolic parameters of GFP-and DsRed-labeled Fusarium verticillioides strains. Phytopathology 106:890-899. https://doi.org/10.1094/PHYTO-09-15-0236-R