Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.02.2018.0034

Visualization of Phytophthora palmivora Infection in Oil Palm Leaflets with Fluorescent Proteins and Cell Viability Markers  

Ochoa, Juan C. (Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA))
Herrera, Mariana (Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA))
Navia, Monica (Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA))
Romero, Hernan Mauricio (Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA))
Publication Information
The Plant Pathology Journal / v.35, no.1, 2019 , pp. 19-31 More about this Journal
Abstract
Bud rot (BR) is the most devastating disease affecting oil palm (Elaeis guineensis) crops in Colombia. Its causal agent, Phytophthora palmivora, initiates the infection in immature oil palm leaflets producing necrotic lesions, followed by colonization of opportunistic necrotrophs, which increases disease damage. To improve the characterization of the disease, we transformed P. palmivora using Agrobacterium tumefaciens-mediated transformation (ATMT) to include the fluorescent proteins CFP-SKL (peroxisomal localization), eGFP and mRFP1 (cytoplasmic localization). The stability of some transformants was confirmed by Southern blot analysis and single zoospore cultures; additionally, virulence and in vitro growth were compared to the wild-type isolate to select transformants with the greatest resemblance to the WT isolate. GFP-tagged P. palmivora was useful to identify all of the infective structures that are commonly formed by hemibiotrophic oomycetes, including apoplastic colonization and haustorium formation. Finally, we detected cell death responses associated with immature oil palm tissues that showed reduced susceptibility to P. palmivora infection, indicating that these tissues could exhibit age-related resistance. The aim of this research is to improve the characterization of the initial disease stages and generate cell biology tools that may be useful for developing methodologies for early identification of oil palm materials resistant or susceptible to BR.
Keywords
age-related resistance; A. tumefaciens-mediated transformation; cell death responses; GFP; propidium iodide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shibata, Y., Kawakita, K. and Takemoto, D. 2010. Age-related resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthora infestans requires both ethyleneand salicylic acid-mediated signaling pathways. Mol. Plant-Microbe Interact. 23:1130-1142.   DOI
2 Si-Ammour, A., Mauch-Mani, B. and Mauch, F. 2003. Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker: ${\beta}$-aminobutyric acid but not BTH protects potato and Arabidopsis from infection. Mol. Plant Pathol. 4:237-248.   DOI
3 Suratman, A., Ughude, J. O. and Sismindari. 2013. Detection of nptII gene and 35SCaMV promoter in tomatoes (Solanum lycopersicum L.). J. Food Pharm. Sci. 1:10-13.
4 Torres, G. A., Sarria, G. A., Varon, F., Coffey, M. D., Elliott, M. L. and Martinez, G. 2010. First report of bud rot caused by Phytophthora palmivora on African oil palm in Colombia. Plant Dis. 94:1163.
5 Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A. and Guest, D. I. 2016. Bud rot caused by Phytophthora palmivora: A destructive emerging disease of oil palm. Phytopathology 106:320-329.   DOI
6 Tsushima, S., Hasebe, A., Komoto, Y., Carter, J. P., Miyashita, K., Yokoyama, K. and Pickup, R. W. 1995. Detection of genetically engineered microorganisms in paddy soil using a simple and rapid "nested" polymerase chain reaction method. Soil Biol. Biochem. 27:219-227.   DOI
7 van West, P., Kamoun, S., van't Klooster, J. W. and Govers, F. 1999a. Internuclear gene silencing in Phytophthora infestans. Mol. Cell 3:339-348.   DOI
8 van West, P., Reid, B., Campbell, T. A., Sandrock, R. W., Fry, W. E., Kamoun, S. and Gow, N. A. R. 1999b. Green fluorescent protein (GFP) as a reporter gene for the plant pathogenic oomycete Phytophthora palmivora. FEMS Microbiol. Lett. 178:71-80.   DOI
9 Velez, D., Rodriguez, J., Mestizo, Y. A., Varon, F. and Martinez, G. 2013. Desarrollo de Phytophthora palmivora en foliolos inmaduros de palma de aceite inoculados en condiciones in vitro. Fitopatol. Colomb. 37:13-18 (in Spanish).
10 Chetty, V. J., Ceballos, N., Garcia, D., Narvaez-Vasquez, J., Lopez, W. and Orozco-Cardenas, M. L. 2013. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep. 32:239-247.   DOI
11 Drenth, A., Torres, G. A. and Martinez, G. 2013. Phytophthora palmivora, la causa de la Pudricion del cogollo en la palma de aceite. Palmas 34:87-94 (in Spanish).
12 Dunn, A. R., Fry, B. A., Lee, T. Y., Conley, K. D., Balaji, V., Fry, W. E., McLeod, A. and Smart, C. D. 2013. Transformation of Phytophthora capsici with genes for green and red fluorescent protein for use in visualizing plant-pathogen interactions. Aust. Plant Pathol. 42:583-593.   DOI
13 Erwin, D. C. and Ribeiro, O. K. 1996. Phytophthora diseases worldwide. APS Press. St Paul, MN, USA. 592 pp.
14 Abu-El Samen, F. M., Secor, G. and Gudmestad, N. 2003. Variability in virulence among asexual progenies of Phytophthora infestans. Phytopathology 93:293-304.   DOI
15 Ah-Fong, A. M. V. and Judelson, H. S. 2011. Vectors for fluorescent protein tagging in Phytophthora: tools for functional genomics and cell biology. Fungal Biol. 115:882-890.   DOI
16 Acevedo-Garcia, J., Kusch, S. and Panstruga, R. 2014. Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol. 204:273-281.   DOI
17 Schornack, S., van Damme, M., Bozkurt, T. O., Cano, L. M., Smoker, M., Thines, M., Gaulin, E., Kamoun, S. and Huitema, E. 2010. Ancient class of translocated oomycete effectors targets the host nucleus. Proc. Natl. Acad. Sci. U.S.A. 107:17421-17426.   DOI
18 Cvitanich, C. and Judelson, H. S. 2003. Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr. Genet. 42:228-235.   DOI
19 Chaparro-Garcia, A., Wilkinson, R. C., Gimenez-Ibanez, S., Findlay, K., Coffey, M. D., Zipfel, C., Rathjen, J. P., Kamoun, S. and Schornack, S. 2011. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS One 6:e16608.   DOI
20 Judelson, H. S. and Ah-Fong, A. M. V. 2009. Progress and challenges in oomycete transformation. In: Oomycete genetics and genomics: diversity, interactions and research tools, eds. by K. Lamour and S. Kamoun, pp. 435-453. Wiley-Blackwell, NY, USA.
21 Blanco, F. A. and Judelson, H. S. 2005. A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol. Microbiol. 56:638-648.   DOI
22 Ficke, A., Gadoury, D. M. and Seem, R. C. 2002. Ontogenic resistance and plant disease management: A case study of grape powdery mildew. Phytopathology 92:671-675.   DOI
23 Bos, J. I. B., Armstrong, M. R., Gilroy, E. M., Boevink, P. C., Hein, I., Taylor, R. M., Zhendong, T., Engelhardt, S., Vetukuri, R. R., Harrower, B., Dixelius, C., Bryan, G., Sadanandom, A., Whisson, S. C., Kamoun, S. and Birch, P. R. J. 2010. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc. Natl. Acad. Sci. U.S.A. 107:9909-9914.   DOI
24 Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., Llorente, F., Molina, A., Parker, J., Somerville, S. and Schulze-Lefert, P. 2005. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180-1183.   DOI
25 Bottin, A., Larche, L., Villalba, F., Gaulin, E., Esquerre-Tugaye, M. T. and Rickauer, M. 1999. Green fluorescent protein (GFP) as gene expression reporter and vital marker for studying development and microbe-plant interaction in the tobacco pathogen Phytophthora parasitica var. nicotianae. FEMS Microbiol. Lett. 176:51-56.   DOI
26 Bozkurt, T. O., Schornack, S., Win, J., Shindo, T., Ilyas, M., Oliva, R., Cano, L. M., Jones, A. M., Huitema, E., van der Hoorn, R. A. and Kamoun, S. 2011. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc. Natl. Acad. Sci. U.S.A. 108:20832-20837.   DOI
27 Corley, R. and Tinker, P. 2015. The origin and development of the oil palm industry. In: The Oil Palm, eds. by R. Corley and P. Tinker, pp. 1-29. Wiley-Blackwell, NY, USA.
28 Fang, Y. and Tyler, B. M. 2016. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol. Plant Pathol. 17:127-139.   DOI
29 Fedepalma. 2015. Anuario Estadistico 2014: La agroindustria de la palma de aceite en Colombia y en el mundo 2009-2013. Fedepalma, Bogota, D.C., Colombia. 176 pp (in Spanish).
30 Martinez, G. 2009. Identificacion temprana y manejo integrado de la enfermedad Pudricion del cogollo. Palmas 30:63-77 (in Spanish).
31 Martinez, G., Sarria, G. A., Torres, G. A. and Varon, F. 2010. Phytophthora palmivora es el agente causal de la pudricion del cogollo de la palma de aceite. Palmas 31:334-344 (in Spanish).
32 Moreno-Chacon, A. L., Camperos-Reyes, J. E., Avila Diazgranados, R. A. and Romero, H. M. 2013. Biochemical and physiological responses of oil palm to bud rot caused by Phytophthora palmivora. Plant Physiol. Biochem. 70:246-251.   DOI
33 Navia, E. A., Avila, R. A., Daza, E. E., Restrepo, E. F. and Romero, H. M. 2014. Assessment of tolerance to bud rot in oil palm under field conditions. Eur. J. Plant Pathol. 140:711-720.   DOI
34 Rey, T., Chatterjee, A., Buttay, M., Toulotte, J. and Schornack, S. 2015. Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen. New Phytol. 206:497-500.   DOI
35 Sarria, G. A., Torres, G. A., Aya, H. A., Ariza, J. G., Rodriguez, J., Velez, D. C., Varon, F. and Martinez, G. 2008. Phytophthora sp. es el responsable de las lesiones iniciales de la Pudricion del cogollo (PC) de la Palma de aceite en Colombia. Palmas 29:31-41 (in Spanish).
36 Vijn, I. and Govers, F. 2003. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol. Plant Pathol. 4:459-467.   DOI
37 Frandsen, R. J. N. 2011. A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J. Microbiol. Methods 87:247-262.   DOI
38 Goodwin, S. B., Drenth, A. and Fry, W. E. 1992. Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans. Curr. Genet. 22:107-115.   DOI
39 Sarria, G., Martinez, G., Varon, F., Drenth, A. and Guest, D. I. 2015. Histopathological studies of the process of Phytophthora palmivora infection in oil palm. Eur. J. Plant Pathol. 145:39-51.
40 Velez, D., Rodriguez, J., Varon, F. and Martinez, G. 2015. Seleccion de tejidos de palma de aceite para la evaluacion in vitro de Phytophthora palmivora agente causante de la pudricion del cogollo. Fitopatol. Colomb. 39:11-16 (in Spanish).
41 Wu, D., Navet, N., Liu, Y., Uchida, J. and Tian, M. 2016a. Establishment of a simple and efficient Agrobacterium-mediated transformation system for Phytophthora palmivora. BMC Microbiol. 16:204.   DOI
42 Hooykaas, P., Roobol, C. and Schilperoort, R. 1979. Regulation of the transfer of Ti plasmids of Agrobacterium tumefaciens. J. Gen. Microbiol. 110:99-109.   DOI
43 Huitema, E., Smoker, M. and Kamoun, S. 2011. A Straightforward protocol for electro-transformation of Phytophthora capsici zoospores. Methods Mol. Biol. 712:129-135.   DOI
44 Jones, K., Kim, D. W., Park, J. S. and Khang, C. H. 2016. Livecell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae. BMC Plant Biol. 16:69.   DOI
45 Wu, L., Conner, R., Wang, X., Xu, R. and Li, H. 2016b. Variation in growth, colonization of maize, and metabolic parameters of GFP-and DsRed-labeled Fusarium verticillioides strains. Phytopathology 106:890-899.   DOI
46 Kamoun, S., van West, P. and Govers, F. 1998. Quantification of late blight resistance of potato using transgenic Phytophthora infestans expressing ${\beta}$-glucuronidase. Eur. J. Plant Pathol. 104:521-525.   DOI
47 Schena, L., Duncan, J. M. and Cooke, D. E. L. 2008. Development and application of a PCR-based 'molecular tool box' for the identification of Phytophthora species damaging forests and natural ecosystems. Plant Pathol. 57:64-75.   DOI
48 Judelson, H. S., Tyler, B. M. and Michelmore, R. W. 1991. Transformation of the oomycete pathogen, Phytophthora infestans. Mol. Plant-Microbe Interact. 4:602-607.   DOI
49 Judelson, H. S., Coffey, M. D., Arredondo, F. R. and Tyler, B. M. 1993. Transformation of the oomycete pathogen Phytophthora megasperma f. sp. glycinea occurs by DNA integration into single or multiple chromosomes. Curr. Genet. 23:211-218.   DOI
50 Keller, N. P., Bergstrom, G. C. and Yoder, O. C. 1990. Effects of genetic transformation on fitness of Cochliobolus heterostrophus. Phytopathology 80:1166-1173.   DOI
51 Le Fevre, R., O'Boyle, B., Moscou, M. J. and Schornack, S. 2016. Colonization of barley by the broad-host hemibiotrophic pathogen Phytophthora palmivora uncovers a leaf development dependent involvement of MLO. Mol. Plant-Microbe Interact. 29:385-395.   DOI
52 Latijnhouwers, M., Ligterink, W., Vleeshouwers, V. G. A. A., van West, P. and Govers, F. 2004. A $G{\alpha}$ subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol. Microbiol. 51:925-936.   DOI