Fig. 1. Schematic design for numerical experiment of debris flow
Fig. 2. Impact Force, Water Velocity, and Water Depth at (a) 6m-location of and (b) 5.5m-location of check dam for Q_inflow=600cm3/sec
Fig. 3. Impact Force, Water Velocity, and Water Depth at (a) 5m-location of and (b) 4.5m-location of check dam for Q_inflow=600cm3/sec
Fig. 4. Impact Force according the location of check dam for Q_inflow=600cm3/sec
Fig. 5. Impact Force, Water Velocity, and Water Depth at (a) 6m-location of and (b) 5.5m-location of check dam for Q_inflow=700cm3/sec
Fig. 6. Impact Force, Water Velocity, and Water Depth at (a) 5m-location of and (b) 4.5m-location of check dam for Q_inflow=700cm3/sec
Fig. 7. Impact Force according the location of check dam for Q_inflow=700cm3/sec
Fig. 8. Impact Force according the location of check dam for Q_inflow=700cm3/sec (Between 15sec∼20sec)
References
- S. Kim, I. Yoon, S. Oh, H. Lee, W. Bae, "Numerical simulation for behavior of debris flow according to the variances of slope angle", Journal of the Korean Geo-environmental Society, Vol.13, No.6, pp.59-66, 2012.
- G. B. Crosta, "Failure and Flow Development of a Complex Slide: the 1993 Sesa, landslide", Engineering Geology, Vol. 53, pp. 173-199, 2001. DOI : https://doi.org/10.1016/S0013-7952(00)00073-9
- H. Chen, S. Dadson, Y. G. Chi, "Recent Rainfall-Induced Landslides and Debris Flow in Northern Taiwan", Geomorphology, Vol. 77, pp. 112-125, 2006. DOI : https://doi.org/10.1016/j.geomorph.2006.01.002
- T. Takahashi. Debris Flow: Mechanics, Prediction and Countermeasures. pp.1-448, Taylor & Francis/Balkema, Tokyo, 2007. DOI: https://doi.org/10.1201/9780203946282
- S. B. Savage, K. Hutter, "The Dynamics of Avalanches of Granular Materials from Initiation to Runout. Part I: Analysis", Acta Mechanica, Vol.86, pp.201-223, 1991. DOI: https://doi.org/10.1007/bf01175958
- J. S. O'Brien, P. Y. Julien, W. T. Fullerton, "Two-dimensional Water Flood and Mudflow Simulation", Journal of Hydraulic Engineering, Vol.119, No.2, pp.244-266, 1993. DOI: https://doi.org/10.1061/(asce)0733-9429(1993)119:2(244)
- R. P. Denlinger, R. M. Iverson, "Flow of Variably Fluidized Granular Masses across Three-dimensional Terrain, Numerical Predictions and Experimental Tests", Journal of Geophysical Research, Vol.106, No.B1, pp.553-566, 2001. DOI : https://doi.org/10.1029/2000jb900330
- T. Takahashi, H. Nakagawa, T. Harada, Y. Yamashiki, "Routing debris flows with particle segregation", Journal of Hydraulic Engineering, Vol.118, No.11, pp.1490-1507, 1992. DOI : https://doi.org/10.1061/(asce)0733-9429(1992)118:11(1490)
- S. Kim, S. Oh, H. Lee, "The Study of Relationship between Bern Width and Debris Flow at the Slope", Korean Geo-environmental Society, Vol.14, No.11, pp.5-12, 2013.
- J. Paik, S. Park, "Numerical Modeling and Field Measurement of 1D Debris Flows", Proceeding of the Korean Society of Civil Engineers, Vol.2009, No.10 pp.698-701, 2009.
- L. Luzi, F. Pergalani, M. T. J. Terlien, "Slope Vulnerability to Earthquakes at Subregional Scale, using Probabilistic Techniques and Geographic Information Systems", Engineering Geology, Vol.58, No.3-4, pp.313-336, 2000. DOI: https://doi.org/10.1016/S0013-7952(00)00041-7
- N. Miyazawa, T. Tanishima, K. Sunada, S. Oishi, "Debris-flow Capturing Effect of a Grid-Type Steel-Made Sabo Dam Using 3D Distinct Element Method", Debis Flow Hazards Mitigation, Proceedings of the Third Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Switzerland, Rotterdam, pp.527-538, 2003.
- B. B. Shrestha, "Numerical Modeling on Debris Flows and Its Structural Counter Measure by Sabo Dam", Master's Thesis, Institute of Engineering, Tribhuvan University, Nepal, 2004.
- Y. Satofuka, T. Mizuyama, "Numerical Simulation on a Debris Flow in a Mountainous River with a Sabo Dam", Journal of the Japan Society of Erosion Control Engineering, Vol.58, No.1, pp.14-19, 2005. DOI: https://doi.org/10.11475/sabo1973.58.14
- H. Gotoh, E. Harada, T. Sakai, K. Goda, "Numerical Simulation of Blocking Process of Grid-Type Dam by Debris Flow", Annual Journal of Hydraulic Engineering, JSCE, Vol.50, pp.739-744, 2006. DOI: https://doi.org/10.2208/prohe.50.739
- R. Osti, S. Egashira, "Method to Improve the Mitigative Effectiveness of a Series of Check Dams against Debris Flows", Hydrological Processes, Wiley InterScience, Vol.22, No.26, pp.4986-4996, 2008. DOI: https://doi.org/10.1002/hyp.7118
- K. Chun, Erosion Control Engineering, Hyangmunsa, Seoul, 2011. DOI: https://doi.org/10.978.897187/2338
- H. Kwon, "Safety Analysis of Check Dam according to Sediment Yield in Gangwon Mountain Region", Journal of Korean Society of Hazard Mitigation, Vol.11, No.5, pp.247-254, 2011. DOI: https://doi.org/10.9798/KOSHAM.2011.11.5.247
- C. Lee, S. Joh, K. Park, M. Kim, H. Yoon, A. R. Raja, "Quality Grading of Concrete Soil Erosion Control Dam in the Aspect of Unconfined Concrete Strength by Surface-Wave Technique", Journal of Korean Forest Society, Vol.101, No.3, pp.412-425, 2012.
- X. Lin, Y. You, J. Liu, Y. Zhao, "A Tentative Study on the Stability of a Check Dam". WIT Press on Advances in Earth and Environmental Sciences, 2014. DOI: https://doi.org/10.2495/icesep130081
- B. Yoon, K. Jun, B. Jun, W. Jung, "A Analysis on the Debris Flow Reduction Effect of Debris Barrier Through Simulation", Journal of Korean Society of Hazard Mitigation, Vol.18, No.2, pp.167-173, 2018 DOI: https://doi.org/10.9798/kosham.2018.18.2.167
- S. Kim, K. Chun, S. Kim, K. Jun, "Analysis of Impact Force at the Check Dam For Debris Flow Disaster", Korean Review of Crisis & Emergency Management. Vol.11, No.9, pp.65-77, 2014.